-
Previous Article
Entropies of strictly convex projective manifolds
- JMD Home
- This Issue
- Next Article
Rigidity results for quasiperiodic SL(2, R)-cocycles
1. | CNRS LAGA, Université Paris 13, 93430 Villetaneuse, France |
2. | Laboratoire de Probabilités et Modèles aléatoires, Université Pierre et Marie Curie, Boite courrier 188, 75252–Paris Cedex 05 |
For any given irrational angle on the base, we show that if the cocycle has bounded fibered products and if its fibered rotation number belongs to a set of full measure $\Sigma(\a)$, then the matrix map can be perturbed in the $C^\infty$ topology to yield a $C^\infty$-reducible cocycle. Moreover, the cocycle itself is almost rotations-reducible in the sense that it can be conjugated arbitrarily close to a cocycle of rotations. If the rotation on the circle is of super-Liouville type, the same results hold if instead of having bounded products we only assume that the cocycle is $L^2$-conjugate to a cocycle of rotations.
When the base rotation is Diophantine, we show that if the cocycle is $L^2$-conjugate to a cocycle of rotations and if its fibered rotation number belongs to a set of full measure, then it is $C^\infty$-reducible. This extends a result proven in [5].
As an application, given any smooth SL(2, R)-cocycle over a irrational rotation of the circle, we show that it is possible to perturb the matrix map in the $C^\infty$ topology in such a way that the upper Lyapunov exponent becomes strictly positive. The latter result is generalized, based on different techniques, by Avila in [1] to quasiperiodic SL(2, R)-cocycles over higher-dimensional tori.
Also, in the course of the paper we give a quantitative version of a theorem by L. H. Eliasson, a proof of which is given in the Appendix. This motivates the introduction of a quite general KAM scheme allowing to treat bigger losses of derivatives for which we prove convergence.
[1] |
Claire Chavaudret, Stefano Marmi. Reducibility of quasiperiodic cocycles under a Brjuno-Rüssmann arithmetical condition. Journal of Modern Dynamics, 2012, 6 (1) : 59-78. doi: 10.3934/jmd.2012.6.59 |
[2] |
Claire Chavaudret, Stefano Marmi. Erratum: Reducibility of quasiperiodic cocycles under a Brjuno-Rüssmann arithmetical condition. Journal of Modern Dynamics, 2015, 9: 285-287. doi: 10.3934/jmd.2015.9.285 |
[3] |
Hans Koch, João Lopes Dias. Renormalization of diophantine skew flows, with applications to the reducibility problem. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 477-500. doi: 10.3934/dcds.2008.21.477 |
[4] |
Nikolaos Karaliolios. Differentiable Rigidity for quasiperiodic cocycles in compact Lie groups. Journal of Modern Dynamics, 2017, 11: 125-142. doi: 10.3934/jmd.2017006 |
[5] |
E. Muñoz Garcia, R. Pérez-Marco. Diophantine conditions in small divisors and transcendental number theory. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1401-1409. doi: 10.3934/dcds.2003.9.1401 |
[6] |
Xuanji Hou, Lei Jiao. On local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3125-3152. doi: 10.3934/dcds.2016.36.3125 |
[7] |
Xuanji Hou, Jiangong You. Local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 441-454. doi: 10.3934/dcds.2009.24.441 |
[8] |
Andrea Davini, Maxime Zavidovique. Weak KAM theory for nonregular commuting Hamiltonians. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 57-94. doi: 10.3934/dcdsb.2013.18.57 |
[9] |
Artur Avila. Density of positive Lyapunov exponents for quasiperiodic SL(2, R)-cocycles in arbitrary dimension. Journal of Modern Dynamics, 2009, 3 (4) : 631-636. doi: 10.3934/jmd.2009.3.631 |
[10] |
Fan Wu, Linlin Fu, Jiahao Xu. On the density of certain spectral points for a class of $ C^{2} $ quasiperiodic Schrödinger cocycles. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2525-2540. doi: 10.3934/dcds.2021201 |
[11] |
Michele V. Bartuccelli, G. Gentile, Kyriakos V. Georgiou. Kam theory, Lindstedt series and the stability of the upside-down pendulum. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 413-426. doi: 10.3934/dcds.2003.9.413 |
[12] |
Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069 |
[13] |
Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080 |
[14] |
Linlin Fu, Jiahao Xu. A new proof of continuity of Lyapunov exponents for a class of $ C^2 $ quasiperiodic Schrödinger cocycles without LDT. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2915-2931. doi: 10.3934/dcds.2019121 |
[15] |
Maxime Zavidovique. Existence of $C^{1,1}$ critical subsolutions in discrete weak KAM theory. Journal of Modern Dynamics, 2010, 4 (4) : 693-714. doi: 10.3934/jmd.2010.4.693 |
[16] |
Luigi Chierchia, Gabriella Pinzari. Properly-degenerate KAM theory (following V. I. Arnold). Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 545-578. doi: 10.3934/dcdss.2010.3.545 |
[17] |
Valentin Ovsienko, Richard Schwartz, Serge Tabachnikov. Quasiperiodic motion for the pentagram map. Electronic Research Announcements, 2009, 16: 1-8. doi: 10.3934/era.2009.16.1 |
[18] |
Frank Trujillo. Uniqueness properties of the KAM curve. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5165-5182. doi: 10.3934/dcds.2021072 |
[19] |
David DeLatte. Diophantine conditions for the linearization of commuting holomorphic functions. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 317-332. doi: 10.3934/dcds.1997.3.317 |
[20] |
Shrikrishna G. Dani. Simultaneous diophantine approximation with quadratic and linear forms. Journal of Modern Dynamics, 2008, 2 (1) : 129-138. doi: 10.3934/jmd.2008.2.129 |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]