Let $M$ be a closed $3$-manifold, and let $X_t$ be a transitive Anosov flow.
We construct a diffeomorphism of the form $f(p)=Y_{t(p)}(p)$, where $Y$ is an
Anosov flow equivalent to $X$. The diffeomorphism $f$ is structurally
stable (satisfies Axiom A and the strong transversality
condition); the non-wandering set of $f$ is the union of a transitive
attractor and a transitive repeller; and $f$ is also partially
hyperbolic (the direction $\RR.Y$ is the central bundle).