-
Previous Article
The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis
- JMD Home
- This Issue
-
Next Article
Linear cocycles over hyperbolic systems and criteria of conformality
The action of finite-state tree automorphisms on Bernoulli measures
1. | Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, United States |
References:
[1] |
L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups, Tr. Mat. Inst. Steklova, 231 (2000), 5-45. |
[2] |
Laurent Bartholdi and Volodymyr Nekrashevych, Thurston equivalence of topological polynomials, Aca Math., 197 (2006), 1-51.
doi: doi:10.1007/s11511-006-0007-3. |
[3] |
Patrick Billingsley, "Ergodic Theory and Information," Robert E. Krieger Publishing Co., Huntington, N.Y., 1978. |
[4] |
R. I. Grigorchuk, On the Milnor problem of group growth, Dokl. Akad. Nauk SSSR, 271 (1983), 30-33. |
[5] |
R. I. Grigorchuk, V. V. Nekrashevich and V. I. Sushchanskiĭ, Automata, dynamical systems, and groups, Tr. Mat. Inst. Steklova, 231 (2000), 134-214. |
[6] |
V. B. Kudryavtsev, S. V. Aleshin and A. S. Podkolzin, Vvedenie v teoriyu avtomatov, (Russian) [Introduction to automata theory], "Nauka," Moscow, 1985. |
[7] |
J. Milnor, Problem 5603, Amer. Math. Monthly, 75 (1968), 685-686,
doi: doi:10.2307/2313822. |
[8] |
Volodymyr Nekrashevych, "Self-similar Groups," American Mathematical Society, 2005. |
[9] |
A. V. Ryabinin, Stochastic functions of finite automata, in "Algebra, Logic and Number Theory" (Russian), 77-80, Moskov. Gos. Univ., Moscow, 1986. |
[10] |
Said Sidki, Automorphisms of one-rooted trees: Growth, circuit structure, and acyclicity, J. Math. Sci. (New York), 100 (2000), 1925-1943.
doi: doi:10.1007/BF02677504. |
[11] |
V. A. Ufnarovskii, A growth criterion for graphs and algebras defined by words, Math. Notes, 31 (1982), 238-241.
doi: doi:10.1007/BF01145476. |
[12] |
Mariya Vorobets and Yaroslav Vorobets, On a free group of transformations defined by an automaton, Geom. Dedicata, 124 (2007), 237-249.
doi: doi:10.1007/s10711-006-9060-5. |
show all references
References:
[1] |
L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups, Tr. Mat. Inst. Steklova, 231 (2000), 5-45. |
[2] |
Laurent Bartholdi and Volodymyr Nekrashevych, Thurston equivalence of topological polynomials, Aca Math., 197 (2006), 1-51.
doi: doi:10.1007/s11511-006-0007-3. |
[3] |
Patrick Billingsley, "Ergodic Theory and Information," Robert E. Krieger Publishing Co., Huntington, N.Y., 1978. |
[4] |
R. I. Grigorchuk, On the Milnor problem of group growth, Dokl. Akad. Nauk SSSR, 271 (1983), 30-33. |
[5] |
R. I. Grigorchuk, V. V. Nekrashevich and V. I. Sushchanskiĭ, Automata, dynamical systems, and groups, Tr. Mat. Inst. Steklova, 231 (2000), 134-214. |
[6] |
V. B. Kudryavtsev, S. V. Aleshin and A. S. Podkolzin, Vvedenie v teoriyu avtomatov, (Russian) [Introduction to automata theory], "Nauka," Moscow, 1985. |
[7] |
J. Milnor, Problem 5603, Amer. Math. Monthly, 75 (1968), 685-686,
doi: doi:10.2307/2313822. |
[8] |
Volodymyr Nekrashevych, "Self-similar Groups," American Mathematical Society, 2005. |
[9] |
A. V. Ryabinin, Stochastic functions of finite automata, in "Algebra, Logic and Number Theory" (Russian), 77-80, Moskov. Gos. Univ., Moscow, 1986. |
[10] |
Said Sidki, Automorphisms of one-rooted trees: Growth, circuit structure, and acyclicity, J. Math. Sci. (New York), 100 (2000), 1925-1943.
doi: doi:10.1007/BF02677504. |
[11] |
V. A. Ufnarovskii, A growth criterion for graphs and algebras defined by words, Math. Notes, 31 (1982), 238-241.
doi: doi:10.1007/BF01145476. |
[12] |
Mariya Vorobets and Yaroslav Vorobets, On a free group of transformations defined by an automaton, Geom. Dedicata, 124 (2007), 237-249.
doi: doi:10.1007/s10711-006-9060-5. |
[1] |
Bernard Host, Alejandro Maass, Servet Martínez. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1423-1446. doi: 10.3934/dcds.2003.9.1423 |
[2] |
Marcelo Sobottka. Right-permutative cellular automata on topological Markov chains. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1095-1109. doi: 10.3934/dcds.2008.20.1095 |
[3] |
Samuel N. Cohen, Lukasz Szpruch. On Markovian solutions to Markov Chain BSDEs. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 257-269. doi: 10.3934/naco.2012.2.257 |
[4] |
Brian Marcus and Selim Tuncel. Powers of positive polynomials and codings of Markov chains onto Bernoulli shifts. Electronic Research Announcements, 1999, 5: 91-101. |
[5] |
Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004 |
[6] |
Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics and Games, 2021, 8 (1) : 35-59. doi: 10.3934/jdg.2020033 |
[7] |
Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control and Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012 |
[8] |
Ralf Banisch, Carsten Hartmann. A sparse Markov chain approximation of LQ-type stochastic control problems. Mathematical Control and Related Fields, 2016, 6 (3) : 363-389. doi: 10.3934/mcrf.2016007 |
[9] |
Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial and Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529 |
[10] |
Kaïs Ammari, Denis Mercier, Virginie Régnier, Julie Valein. Spectral analysis and stabilization of a chain of serially connected Euler-Bernoulli beams and strings. Communications on Pure and Applied Analysis, 2012, 11 (2) : 785-807. doi: 10.3934/cpaa.2012.11.785 |
[11] |
Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034 |
[12] |
Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39 |
[13] |
Alexandre Fotue-Tabue, Edgar Martínez-Moro, J. Thomas Blackford. On polycyclic codes over a finite chain ring. Advances in Mathematics of Communications, 2020, 14 (3) : 455-466. doi: 10.3934/amc.2020028 |
[14] |
A. Mittal, N. Hemachandra. Learning algorithms for finite horizon constrained Markov decision processes. Journal of Industrial and Management Optimization, 2007, 3 (3) : 429-444. doi: 10.3934/jimo.2007.3.429 |
[15] |
Hisayoshi Toyokawa. $\sigma$-finite invariant densities for eventually conservative Markov operators. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2641-2669. doi: 10.3934/dcds.2020144 |
[16] |
Richard Sharp. Conformal Markov systems, Patterson-Sullivan measure on limit sets and spectral triples. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2711-2727. doi: 10.3934/dcds.2016.36.2711 |
[17] |
T.K. Subrahmonian Moothathu. Homogeneity of surjective cellular automata. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 195-202. doi: 10.3934/dcds.2005.13.195 |
[18] |
Achilles Beros, Monique Chyba, Oleksandr Markovichenko. Controlled cellular automata. Networks and Heterogeneous Media, 2019, 14 (1) : 1-22. doi: 10.3934/nhm.2019001 |
[19] |
Luigi Ambrosio, Michele Miranda jr., Diego Pallara. Sets with finite perimeter in Wiener spaces, perimeter measure and boundary rectifiability. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 591-606. doi: 10.3934/dcds.2010.28.591 |
[20] |
Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085 |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]