Advanced Search
Article Contents
Article Contents

The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis

Abstract Related Papers Cited by
  • We compute explicitly the action of the group of affine diffeomorphisms on the relative homology of two remarkable origamis discovered respectively by Forni (in genus $3$) and Forni and Matheus (in genus $4$). We show that, in both cases, the action on the nontrivial part of the homology is through finite groups. In particular, the action on some $4$-dimensional invariant subspace of the homology leaves invariant a root system of $D_4$ type. This provides as a by-product a new proof of (slightly stronger versions of) the results of Forni and Matheus: the nontrivial Lyapunov exponents of the Kontsevich-Zorich cocycle for the Teichmüller disks of these two origamis are equal to zero.
    Mathematics Subject Classification: Primary: 37D40; Secondary: 37Axx.


    \begin{equation} \\ \end{equation}
  • [1]

    A. Avila and M. Viana, Simplicity of Lyapunov spectra: Proof of the Zorich-Kontsevich conjecture, Acta Math., 198 (2007), 1-56.doi: doi:10.1007/s11511-007-0012-1.


    O. Bauer, Familien von Jacobivarietäten über Origamikurven, PhD thesis, http://digbib.ubka.uni-karlsruhe.de/volltexte/1000011870, 2009.


    J. Borwein and P. Borwein, "Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity," Canadian Math. Soc. Series of Monographs and Advanced Texts, John Willey and Sons, New York, 1987.


    N. Bourbaki, "Groupes et Algèbres de Lie. Chapitre VI: Systèmes de Racines," Hermann, Paris, 1960.


    I. Bouw and M. MöllerTeichmüller curves, triangle groups, and Lyapunov exponents, to appear in Annals of Math.


    G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math., 155 (2002), 1-103.doi: doi:10.2307/3062150.


    G. Forni, On the Lyapunov exponents of the Kontsevich-Zorich cocycle, "Handbook of Dynamical Systems" (eds. B. Hasselblatt and A. Katok), v. 1B, Elsevier, (2006), 549-580.


    G. Forni and C. MatheusAn example of a Teichmüller disk in genus 4 with degenerate Kontsevich-Zorich spectrum, preprint, arXiv:0810.0023.


    F. Herrlich and G. Schmithüsen, An extraordinary origami curve, Math. Nachr., 281 (2008), 219-237.doi: doi:10.1002/mana.200510597.


    P. Hubert and T. Schmidt, An introduction to Veech surfaces, "Handbook of Dynamical Systems" (eds. B. Hasselblatt and A. Katok), v. 1B, Elsevier, (2006), 501-526.


    M. Kontsevich, Lyapunov exponents and Hodge theory, in "The Mathematical Beauty of Physics" (Saclay, 1996), 318-332, Adv. Ser. Math. Phys., v. 24, World Scientific, River Edge, NJ, 1997.


    M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678.doi: doi:10.1007/s00222-003-0303-x.


    E. Lanneau, Connected components of the strata of the moduli spaces of quadratic differentials, Ann. Sci. ENS, 41 (2008), 1-56.


    H. Masur, Interval-exchange transformations and measured foliations, Ann. of Math., 115 (1982), 169-200.doi: doi:10.2307/1971341.


    M. MöllerShimura and Teichmüller curves, preprint, arXiv:math/0501333.


    W. Veech, Teichmüller geodesic flow, Ann. of Math., 124 (1986), 441-530.doi: doi:10.2307/2007091.


    W. Veech, Gauss measures for transformations on the space of interval-exchange maps, Ann. of Math., 115 (1982), 201-242.doi: doi:10.2307/1971391.


    W. Veech, Moduli spaces of quadratic differentials, J. Anal. Math., 55 (1990), 117-171.doi: doi:10.1007/BF02789200.


    W. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Inv. Math., 97 (1989), 553-583.doi: doi:10.1007/BF01388890.


    J. C. Yoccoz, Interval-exchange maps and translation surfaces, Clay Math. Inst. Summer School on Homogenous Flows, Moduli Spaces and Arithmetic, Pisa, http://www.college-de-france.fr/media/equ_dif/UPL15305_PisaLecturesJCY2007.pdf, 2007.


    A. Zorich, Asymptotic flag of an orientable measured foliation on a surface, in "Geometric Study of Foliations," World Scientific, (1994), 479-498.


    A. Zorich, Explicit Jenkins-Strebel representatives of all strata of Abelian and quadratic differentials, Journal of Modern Dynamics, 2 (2008), 139-185.


    A. Zorich, Flat surfaces, "Frontiers in Number Theory, Physics, and Geometry," v. I, Springer, (2006), 437-583.doi: doi:10.1007/978-3-540-31347-2_13.

  • 加载中

Article Metrics

HTML views() PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint