-
Previous Article
Structure of attractors for $(a,b)$-continued fraction transformations
- JMD Home
- This Issue
-
Next Article
New cases of differentiable rigidity for partially hyperbolic actions: Symplectic groups and resonance directions
Ratner's property and mild mixing for special flows over two-dimensional rotations
1. | Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń |
2. | Faculty of Mathematics and Computer Science, N. Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland |
References:
[1] |
J.-P. Allouche and J. Shallit, "Automatic Sequences. Theory, Applications, Generalizations," Cambridge Univ. Press, 2003.
doi: 10.1017/CBO9780511546563. |
[2] |
V. I. Arnold, Topological and ergodic properties of closed 1-forms with incommensurable periods, (Russian) Funktsional. Anal. i Prilozhen., 25 (1991), 1-12, 96; translation in Funct. Anal. Appl., 25 (1991), 81-90. |
[3] |
I. P. Cornfeld, S. V. Fomin and Y. G. Sinai, "Ergodic Theory," Translated from the Russian by A. B. Sosinskii. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 245, Springer-Verlag, New York, 1982. |
[4] |
B. Fayad, Polynomial decay of correlations for a class of smooth flows on the two torus, Bull. Soc. Math. France, 129 (2001), 487-503. |
[5] |
B. Fayad, Analytic mixing reparametrizations of irrational flows, Ergodic Theory Dynam. Systems, 22 (2002), 437-468.
doi: 10.1017/S0143385702000214. |
[6] |
B. Fayad, Smooth mixing flows with purely singular spectra, Duke Math. J., 132 (2006), 371-391.
doi: 10.1215/S0012-7094-06-13225-8. |
[7] |
K. Frączek and M. Lemańczyk, A class of special flows over irrational rotations which is disjoint from mixing flows, Ergodic Theory Dynam. Systems, 24 (2004), 1083-1095.
doi: 10.1017/S0143385704000112. |
[8] |
K. Frączek and M. Lemańczyk, On mild mixing of special flows over irrational rotations under piecewise smooth functions, Ergodic Theory Dynam. Systems, 26 (2006), 719-738.
doi: 10.1017/S0143385706000046. |
[9] |
K. Frączek, M. Lemańczyk and E. Lesigne, Mild mixing property for special flows under piecewise constant functions, Discrete Contin. Dynam. Syst., 19 (2007), 691-710.
doi: 10.3934/dcds.2007.19.691. |
[10] |
K. Frączek and M. Lemańczyk, On the self-similarity problem for ergodic flows, Proc. London Math. Soc., 99 (2009), 658-696.
doi: 10.1112/plms/pdp013. |
[11] |
K. Frączek and M. Lemańczyk, A class of mixing special flows over two-dimensional rotations,, submitted., ().
|
[12] |
K. Frączek and M. Lemańczyk, Ratner's property and mixing for special flows over two-dimensional rotations,, \arXiv{1002.2734}., ().
|
[13] |
H. Furstenberg and B. Weiss, The finite multipliers of infinite ergodic transformations. The structure of attractors in dynamical systems, (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977), 127-132, Lecture Notes in Math., 668, Springer, Berlin, 1978. |
[14] |
B. Host, Mixing of all orders and pairwise independent joinings of systems with singular spectrum, Israel J. Math., 76 (1991), 289-298.
doi: 10.1007/BF02773866. |
[15] |
A. Iwanik, M. Lemańczyk and C. Mauduit, Piecewise absolutely continuous cocycles over irrational rotations, J. London Math. Soc. (2), 59 (1999), 171-187.
doi: 10.1112/S0024610799006961. |
[16] |
A. Katok, Cocycles, cohomology and combinatorial constructions in ergodic theory, In collaboration with E. A. Robinson, Jr. Proc. Sympos. Pure Math., 69, Smooth ergodic theory and its applications (Seattle, WA, 1999), 107-173, Amer. Math. Soc., Providence, RI, 2001. |
[17] |
A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, With a supplementary chapter by Katok and Leonardo Mendoza. Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge, 1995. |
[18] |
K. M. Khanin and Y. G. Sinai, Mixing of some classes of special flows over rotations of the circle, (Russian) Funktsional. Anal. i Prilozhen., 26 (1992), 1-21; translation in Funct. Anal. Appl., 26 (1992), 155-169. |
[19] |
Y. Khinchin, "Continued Fractions," The University of Chicago Press, Chicago, Ill.-London 1964. |
[20] |
A. V. Kochergin, The absence of mixing in special flows over a rotation of the circle and in flows on a two-dimensional torus, (Russian) Dokl. Akad. Nauk SSSR, 205 (1972), 515-518. |
[21] |
A. V. Kochergin, Mixing in special flows over a rearrangement of segments and in smooth flows on surfaces, (Russian) Mat. Sb., 96 (1975), 471-502. |
[22] |
A. V. Kochergin, Non-degenerated saddles and absence of mixing, (Russian) Mat. Zametki, 19 (1976), 453-468. |
[23] |
A. V. Kochergin, A mixing special flow over a rotation of the circle with an almost Lipschitz function, (Russian) Mat. Sb., 193 (2002), 51-78; translation in Sb. Math., 193 (2002), 359-385. |
[24] |
A. V. Kochergin, Nondegenerate fixed points and mixing in flows on a two-dimensional torus. II, (Russian) Mat. Sb., 195 (2004), 15-46; translation in Sb. Math., 195 (2004), 317-346. |
[25] |
A. V. Kochergin, Causes of stretching of Birkhoff sums and mixing in flows on surfaces, Dynamics, ergodic theory, and geometry, 129-144, Math. Sci. Res. Inst. Publ., 54, Cambridge Univ. Press, Cambridge, 2007. |
[26] |
M. Lemańczyk, Sur l'absence de mélange pour des flots spéciaux au dessus d'une rotation irrationnelle, (French) [Absence of mixing for special flows over an irrational rotation] Dedicated to the memory of Anzelm Iwanik. Colloq. Math., 84/85 (2000), part 1, 29-41. |
[27] |
J. von Neumann, Zur Operatorenmethode in der Klassichen Mechanik, (German), Ann. of Math., 33 (1932), 587-642.
doi: 10.2307/1968537. |
[28] |
M. Ratner, Horocycle flows, joinings and rigidity of products, Ann. of Math. (2), 118 (1983), 277-313.
doi: 10.2307/2007030. |
[29] |
V. V. Ryzhikov and J.-P. Thouvenot, Disjointness, divisibility, and quasi-simplicity of measure-preserving actions, (Russian) Funktsional. Anal. i Prilozhen., 40 (2006), 85-89; translation in Funct. Anal. Appl., 40 (2006), 237-240. |
[30] |
J.-P. Thouvenot, Some properties and applications of joinings in ergodic theory, Ergodic theory and its connections with harmonic analysis (Alexandria, 1993), 207-235, London Math. Soc. Lecture Note Ser., 205, Cambridge Univ. Press, Cambridge, 1995. |
[31] |
K. Schmidt, Dispersing cocycles and mixing flows under functions, Fund. Math., 173 (2002), 191-199.
doi: 10.4064/fm173-2-6. |
[32] |
D. Witte, Rigidity of some translations on homogeneous spaces, Invent. Math., 81 (1985), 1-27.
doi: 10.1007/BF01388769. |
[33] |
J.-Ch. Yoccoz, Centralisateurs et conjugaison différentiable des difféomorphismes du cercle, (French) [Centralizers and differentiable conjugacy of diffeomorphisms of the circle] Petits diviseurs en dimension $1$. Astérisque No. 231, (1995), 89-242. |
show all references
References:
[1] |
J.-P. Allouche and J. Shallit, "Automatic Sequences. Theory, Applications, Generalizations," Cambridge Univ. Press, 2003.
doi: 10.1017/CBO9780511546563. |
[2] |
V. I. Arnold, Topological and ergodic properties of closed 1-forms with incommensurable periods, (Russian) Funktsional. Anal. i Prilozhen., 25 (1991), 1-12, 96; translation in Funct. Anal. Appl., 25 (1991), 81-90. |
[3] |
I. P. Cornfeld, S. V. Fomin and Y. G. Sinai, "Ergodic Theory," Translated from the Russian by A. B. Sosinskii. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 245, Springer-Verlag, New York, 1982. |
[4] |
B. Fayad, Polynomial decay of correlations for a class of smooth flows on the two torus, Bull. Soc. Math. France, 129 (2001), 487-503. |
[5] |
B. Fayad, Analytic mixing reparametrizations of irrational flows, Ergodic Theory Dynam. Systems, 22 (2002), 437-468.
doi: 10.1017/S0143385702000214. |
[6] |
B. Fayad, Smooth mixing flows with purely singular spectra, Duke Math. J., 132 (2006), 371-391.
doi: 10.1215/S0012-7094-06-13225-8. |
[7] |
K. Frączek and M. Lemańczyk, A class of special flows over irrational rotations which is disjoint from mixing flows, Ergodic Theory Dynam. Systems, 24 (2004), 1083-1095.
doi: 10.1017/S0143385704000112. |
[8] |
K. Frączek and M. Lemańczyk, On mild mixing of special flows over irrational rotations under piecewise smooth functions, Ergodic Theory Dynam. Systems, 26 (2006), 719-738.
doi: 10.1017/S0143385706000046. |
[9] |
K. Frączek, M. Lemańczyk and E. Lesigne, Mild mixing property for special flows under piecewise constant functions, Discrete Contin. Dynam. Syst., 19 (2007), 691-710.
doi: 10.3934/dcds.2007.19.691. |
[10] |
K. Frączek and M. Lemańczyk, On the self-similarity problem for ergodic flows, Proc. London Math. Soc., 99 (2009), 658-696.
doi: 10.1112/plms/pdp013. |
[11] |
K. Frączek and M. Lemańczyk, A class of mixing special flows over two-dimensional rotations,, submitted., ().
|
[12] |
K. Frączek and M. Lemańczyk, Ratner's property and mixing for special flows over two-dimensional rotations,, \arXiv{1002.2734}., ().
|
[13] |
H. Furstenberg and B. Weiss, The finite multipliers of infinite ergodic transformations. The structure of attractors in dynamical systems, (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977), 127-132, Lecture Notes in Math., 668, Springer, Berlin, 1978. |
[14] |
B. Host, Mixing of all orders and pairwise independent joinings of systems with singular spectrum, Israel J. Math., 76 (1991), 289-298.
doi: 10.1007/BF02773866. |
[15] |
A. Iwanik, M. Lemańczyk and C. Mauduit, Piecewise absolutely continuous cocycles over irrational rotations, J. London Math. Soc. (2), 59 (1999), 171-187.
doi: 10.1112/S0024610799006961. |
[16] |
A. Katok, Cocycles, cohomology and combinatorial constructions in ergodic theory, In collaboration with E. A. Robinson, Jr. Proc. Sympos. Pure Math., 69, Smooth ergodic theory and its applications (Seattle, WA, 1999), 107-173, Amer. Math. Soc., Providence, RI, 2001. |
[17] |
A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, With a supplementary chapter by Katok and Leonardo Mendoza. Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge, 1995. |
[18] |
K. M. Khanin and Y. G. Sinai, Mixing of some classes of special flows over rotations of the circle, (Russian) Funktsional. Anal. i Prilozhen., 26 (1992), 1-21; translation in Funct. Anal. Appl., 26 (1992), 155-169. |
[19] |
Y. Khinchin, "Continued Fractions," The University of Chicago Press, Chicago, Ill.-London 1964. |
[20] |
A. V. Kochergin, The absence of mixing in special flows over a rotation of the circle and in flows on a two-dimensional torus, (Russian) Dokl. Akad. Nauk SSSR, 205 (1972), 515-518. |
[21] |
A. V. Kochergin, Mixing in special flows over a rearrangement of segments and in smooth flows on surfaces, (Russian) Mat. Sb., 96 (1975), 471-502. |
[22] |
A. V. Kochergin, Non-degenerated saddles and absence of mixing, (Russian) Mat. Zametki, 19 (1976), 453-468. |
[23] |
A. V. Kochergin, A mixing special flow over a rotation of the circle with an almost Lipschitz function, (Russian) Mat. Sb., 193 (2002), 51-78; translation in Sb. Math., 193 (2002), 359-385. |
[24] |
A. V. Kochergin, Nondegenerate fixed points and mixing in flows on a two-dimensional torus. II, (Russian) Mat. Sb., 195 (2004), 15-46; translation in Sb. Math., 195 (2004), 317-346. |
[25] |
A. V. Kochergin, Causes of stretching of Birkhoff sums and mixing in flows on surfaces, Dynamics, ergodic theory, and geometry, 129-144, Math. Sci. Res. Inst. Publ., 54, Cambridge Univ. Press, Cambridge, 2007. |
[26] |
M. Lemańczyk, Sur l'absence de mélange pour des flots spéciaux au dessus d'une rotation irrationnelle, (French) [Absence of mixing for special flows over an irrational rotation] Dedicated to the memory of Anzelm Iwanik. Colloq. Math., 84/85 (2000), part 1, 29-41. |
[27] |
J. von Neumann, Zur Operatorenmethode in der Klassichen Mechanik, (German), Ann. of Math., 33 (1932), 587-642.
doi: 10.2307/1968537. |
[28] |
M. Ratner, Horocycle flows, joinings and rigidity of products, Ann. of Math. (2), 118 (1983), 277-313.
doi: 10.2307/2007030. |
[29] |
V. V. Ryzhikov and J.-P. Thouvenot, Disjointness, divisibility, and quasi-simplicity of measure-preserving actions, (Russian) Funktsional. Anal. i Prilozhen., 40 (2006), 85-89; translation in Funct. Anal. Appl., 40 (2006), 237-240. |
[30] |
J.-P. Thouvenot, Some properties and applications of joinings in ergodic theory, Ergodic theory and its connections with harmonic analysis (Alexandria, 1993), 207-235, London Math. Soc. Lecture Note Ser., 205, Cambridge Univ. Press, Cambridge, 1995. |
[31] |
K. Schmidt, Dispersing cocycles and mixing flows under functions, Fund. Math., 173 (2002), 191-199.
doi: 10.4064/fm173-2-6. |
[32] |
D. Witte, Rigidity of some translations on homogeneous spaces, Invent. Math., 81 (1985), 1-27.
doi: 10.1007/BF01388769. |
[33] |
J.-Ch. Yoccoz, Centralisateurs et conjugaison différentiable des difféomorphismes du cercle, (French) [Centralizers and differentiable conjugacy of diffeomorphisms of the circle] Petits diviseurs en dimension $1$. Astérisque No. 231, (1995), 89-242. |
[1] |
Krzysztof Frączek, M. Lemańczyk, E. Lesigne. Mild mixing property for special flows under piecewise constant functions. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 691-710. doi: 10.3934/dcds.2007.19.691 |
[2] |
Mariusz Lemańczyk. Ergodicity, mixing, Ratner's properties and disjointness for classical flows: On the research of Corinna Ulcigrai. Journal of Modern Dynamics, 2022, 18: 103-130. doi: 10.3934/jmd.2022005 |
[3] |
Krzysztof Frączek, Mariusz Lemańczyk. A class of mixing special flows over two--dimensional rotations. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4823-4829. doi: 10.3934/dcds.2015.35.4823 |
[4] |
Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817 |
[5] |
Roland Gunesch, Anatole Katok. Construction of weakly mixing diffeomorphisms preserving measurable Riemannian metric and smooth measure. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 61-88. doi: 10.3934/dcds.2000.6.61 |
[6] |
Dmitri Scheglov. Absence of mixing for smooth flows on genus two surfaces. Journal of Modern Dynamics, 2009, 3 (1) : 13-34. doi: 10.3934/jmd.2009.3.13 |
[7] |
Przemysław Berk, Krzysztof Frączek. On special flows over IETs that are not isomorphic to their inverses. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 829-855. doi: 10.3934/dcds.2015.35.829 |
[8] |
Anthony Quas, Terry Soo. Weak mixing suspension flows over shifts of finite type are universal. Journal of Modern Dynamics, 2012, 6 (4) : 427-449. doi: 10.3934/jmd.2012.6.427 |
[9] |
Corinna Ulcigrai. Weak mixing for logarithmic flows over interval exchange transformations. Journal of Modern Dynamics, 2009, 3 (1) : 35-49. doi: 10.3934/jmd.2009.3.35 |
[10] |
Adam Kanigowski, Davide Ravotti. Polynomial 3-mixing for smooth time-changes of horocycle flows. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5347-5371. doi: 10.3934/dcds.2020230 |
[11] |
Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 49-64. doi: 10.3934/dcds.2009.23.49 |
[12] |
Giovanni Forni. The cohomological equation for area-preserving flows on compact surfaces. Electronic Research Announcements, 1995, 1: 114-123. |
[13] |
Jihoon Lee, Ngocthach Nguyen. Flows with the weak two-sided limit shadowing property. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4375-4395. doi: 10.3934/dcds.2021040 |
[14] |
V. Afraimovich, Jean-René Chazottes, Benoît Saussol. Pointwise dimensions for Poincaré recurrences associated with maps and special flows. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 263-280. doi: 10.3934/dcds.2003.9.263 |
[15] |
Bassam Fayad, A. Windsor. A dichotomy between discrete and continuous spectrum for a class of special flows over rotations. Journal of Modern Dynamics, 2007, 1 (1) : 107-122. doi: 10.3934/jmd.2007.1.107 |
[16] |
Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43 |
[17] |
Robert W. Ghrist. Flows on $S^3$ supporting all links as orbits. Electronic Research Announcements, 1995, 1: 91-97. |
[18] |
Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327 |
[19] |
Yang Cao, Song Shao. Topological mild mixing of all orders along polynomials. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1163-1184. doi: 10.3934/dcds.2021150 |
[20] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]