Citation: |
[1] |
R. Adler and L. Flatto, The backward continued fraction map and geodesic flow, Ergod. Th. & Dynam. Sys., 4 (1984), 487-492. |
[2] |
R. Adler and L. Flatto, Geodesic flows, interval maps, and symbolic dynamics, Bull. Amer. Math. Soc., 25 (1991), 229-334.doi: 10.1090/S0273-0979-1991-16076-3. |
[3] |
E. Artin, Ein mechanisches system mit quasiergodischen Bahnen, Abh. Math. Sem. Univ. Hamburg, 3 (1924), 170-175.doi: 10.1007/BF02954622. |
[4] |
J. Bourdon, B. Daireaux and B. Vallée, Dynamical analysis of $\alpha$-Euclidean algorithms, J. Algorithms, 44 (2002), 246-285.doi: 10.1016/S0196-6774(02)00218-3. |
[5] |
C. Carminati and G.Tiozzo, A canonical thickening of $\Q$ and the dynamics of continued fractions, preprint arXiv:1004.3790v1. |
[6] |
G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers," sixth edition, Revised by D. R. Heath-Brown and J. H. Silverman, Oxford University Press, Oxford, 2008. |
[7] |
A. Hurwitz, Über eine besondere Art der Kettenbruch-Entwicklung reeler Grössen, (German), Acta Math., 12 (1889), 367-405.doi: 10.1007/BF02592188. |
[8] |
S. Katok, "Fuchsian Groups," Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992. |
[9] |
S. Katok, Coding of closed geodesics after Gauss and Morse, Geom. Dedicata, 63 (1996), 123-145.doi: 10.1007/BF00148213. |
[10] |
S. Katok and I. Ugarcovici, Arithmetic coding of geodesics on the modular surface via continued fractions, European women in mathematics-Marseille 2003, 59-77, CWI Tract, 135, Centrum Wisk. Inform., Amsterdam, (2005). |
[11] |
S. Katok, I. Ugarcovici, Geometrically Markov geodesics on the modular surface, Moscow Math. J. 5 (2005), 135-151. |
[12] |
S. Katok and I. Ugarcovici, Symbolic dynamics for the modular surface and beyond, Bull. Amer. Math. Soc., 44 (2007), 87-132.doi: 10.1090/S0273-0979-06-01115-3. |
[13] |
S. Katok and I. Ugarcovici, Theory of $(a,b)$-continued fraction transformations and applications, Electron. Res. Announc. Math. Sci., 17 (2010), 20-33.doi: 10.3934/era.2010.17.20. |
[14] |
S. Katok and I. Ugarcovici, Applications of $(a,b)$-continued fraction transformations, in preparation. |
[15] |
C. Kraaikamp, A new class of continued fraction expansions, Acta Arith., 57 (1991), 1-39. |
[16] |
L. Luzzi and S. Marmi, On the entropy of Japanese continued fractions, Discrete Cont. Dyn. Syst., 20 (2008), 673-711. |
[17] |
P. Moussa, A. Cassa and S. Marmi, Continued fractions and Brjuno functions, Continued fractions and geometric function theory (CONFUN) (Trondheim, 1997), J. Comput. Appl. Math., 105 (1999), 403-415.doi: 10.1016/S0377-0427(99)00029-1. |
[18] |
H. Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math., 4 (1981), 399-426.doi: 10.3836/tjm/1270215165. |
[19] |
H. Nakada and R. Natsui, Some metric properties of $\alpha$-continued fractions, Journal of Number Theory, 97 (2002), 287-300.doi: 10.1016/S0022-314X(02)00008-2. |
[20] |
H. Nakada and R. Natsui, The non-monotonicity of the entropy of $\alpha$-continued fraction transformations, Nonlinearity, 21 (2008) 1207-1225.doi: 10.1088/0951-7715/21/6/003. |
[21] |
C. Series, On coding geodesics with continued fractions, Ergodic theory (Sem., Les Plans-sur-Bex, 1980) (French), 67-76, Monograph. Enseign. Math., 29, Univ. Genéve, Geneva, (1981). |
[22] |
F. Schweiger, "Ergodic Theory of Fibred Systems and Metric Number Theory," Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995. |
[23] |
D. Zagier, "Zetafunkionen und Quadratische Körper: Eine Einführung in die Höhere Zahlentheorie," Springer-Verlag, 1981. |
[24] |
R. Zweimüller, Ergodic structure and invariant densities of non-Markovian interval maps with indifferent fixed points, Nonlinearity, 11 (1998), 1263-1276.doi: 10.1088/0951-7715/11/5/005. |