October  2010, 4(4): 637-691. doi: 10.3934/jmd.2010.4.637

Structure of attractors for $(a,b)$-continued fraction transformations

1. 

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802

2. 

Department of Mathematical Sciences, DePaul University, 2320 N. Kenmore Ave., Chicago, IL 60614-3504

Received  March 2010 Revised  September 2010 Published  January 2011

We study a two-parameter family of one-dimensional maps and related $(a,b)$-continued fractions suggested for consideration by Don Zagier. We prove that the associated natural extension maps have attractors with finite rectangular structure for the entire parameter set except for a Cantor-like set of one-dimensional Lebesgue zero measure that we completely describe. We show that the structure of these attractors can be "computed'' from the data $(a,b)$, and that for a dense open set of parameters the Reduction theory conjecture holds, i.e., every point is mapped to the attractor after finitely many iterations. We also show how this theory can be applied to the study of invariant measures and ergodic properties of the associated Gauss-like maps.
Citation: Svetlana Katok, Ilie Ugarcovici. Structure of attractors for $(a,b)$-continued fraction transformations. Journal of Modern Dynamics, 2010, 4 (4) : 637-691. doi: 10.3934/jmd.2010.4.637
References:
[1]

R. Adler and L. Flatto, The backward continued fraction map and geodesic flow, Ergod. Th. & Dynam. Sys., 4 (1984), 487-492.

[2]

R. Adler and L. Flatto, Geodesic flows, interval maps, and symbolic dynamics, Bull. Amer. Math. Soc., 25 (1991), 229-334. doi: 10.1090/S0273-0979-1991-16076-3.

[3]

E. Artin, Ein mechanisches system mit quasiergodischen Bahnen, Abh. Math. Sem. Univ. Hamburg, 3 (1924), 170-175. doi: 10.1007/BF02954622.

[4]

J. Bourdon, B. Daireaux and B. Vallée, Dynamical analysis of $\alpha$-Euclidean algorithms, J. Algorithms, 44 (2002), 246-285. doi: 10.1016/S0196-6774(02)00218-3.

[5]

C. Carminati and G.Tiozzo, A canonical thickening of $\Q$ and the dynamics of continued fractions,, preprint \arXiv{1004.3790v1}., (). 

[6]

G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers," sixth edition, Revised by D. R. Heath-Brown and J. H. Silverman, Oxford University Press, Oxford, 2008.

[7]

A. Hurwitz, Über eine besondere Art der Kettenbruch-Entwicklung reeler Grössen, (German), Acta Math., 12 (1889), 367-405. doi: 10.1007/BF02592188.

[8]

S. Katok, "Fuchsian Groups," Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992.

[9]

S. Katok, Coding of closed geodesics after Gauss and Morse, Geom. Dedicata, 63 (1996), 123-145. doi: 10.1007/BF00148213.

[10]

S. Katok and I. Ugarcovici, Arithmetic coding of geodesics on the modular surface via continued fractions, European women in mathematics-Marseille 2003, 59-77, CWI Tract, 135, Centrum Wisk. Inform., Amsterdam, (2005).

[11]

S. Katok, I. Ugarcovici, Geometrically Markov geodesics on the modular surface, Moscow Math. J. 5 (2005), 135-151.

[12]

S. Katok and I. Ugarcovici, Symbolic dynamics for the modular surface and beyond, Bull. Amer. Math. Soc., 44 (2007), 87-132. doi: 10.1090/S0273-0979-06-01115-3.

[13]

S. Katok and I. Ugarcovici, Theory of $(a,b)$-continued fraction transformations and applications, Electron. Res. Announc. Math. Sci., 17 (2010), 20-33. doi: 10.3934/era.2010.17.20.

[14]

S. Katok and I. Ugarcovici, Applications of $(a,b)$-continued fraction transformations,, in preparation., (). 

[15]

C. Kraaikamp, A new class of continued fraction expansions, Acta Arith., 57 (1991), 1-39.

[16]

L. Luzzi and S. Marmi, On the entropy of Japanese continued fractions, Discrete Cont. Dyn. Syst., 20 (2008), 673-711.

[17]

P. Moussa, A. Cassa and S. Marmi, Continued fractions and Brjuno functions, Continued fractions and geometric function theory (CONFUN) (Trondheim, 1997), J. Comput. Appl. Math., 105 (1999), 403-415. doi: 10.1016/S0377-0427(99)00029-1.

[18]

H. Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math., 4 (1981), 399-426. doi: 10.3836/tjm/1270215165.

[19]

H. Nakada and R. Natsui, Some metric properties of $\alpha$-continued fractions, Journal of Number Theory, 97 (2002), 287-300. doi: 10.1016/S0022-314X(02)00008-2.

[20]

H. Nakada and R. Natsui, The non-monotonicity of the entropy of $\alpha$-continued fraction transformations, Nonlinearity, 21 (2008) 1207-1225. doi: 10.1088/0951-7715/21/6/003.

[21]

C. Series, On coding geodesics with continued fractions, Ergodic theory (Sem., Les Plans-sur-Bex, 1980) (French), 67-76, Monograph. Enseign. Math., 29, Univ. Genéve, Geneva, (1981).

[22]

F. Schweiger, "Ergodic Theory of Fibred Systems and Metric Number Theory," Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.

[23]

D. Zagier, "Zetafunkionen und Quadratische Körper: Eine Einführung in die Höhere Zahlentheorie," Springer-Verlag, 1981.

[24]

R. Zweimüller, Ergodic structure and invariant densities of non-Markovian interval maps with indifferent fixed points, Nonlinearity, 11 (1998), 1263-1276. doi: 10.1088/0951-7715/11/5/005.

show all references

References:
[1]

R. Adler and L. Flatto, The backward continued fraction map and geodesic flow, Ergod. Th. & Dynam. Sys., 4 (1984), 487-492.

[2]

R. Adler and L. Flatto, Geodesic flows, interval maps, and symbolic dynamics, Bull. Amer. Math. Soc., 25 (1991), 229-334. doi: 10.1090/S0273-0979-1991-16076-3.

[3]

E. Artin, Ein mechanisches system mit quasiergodischen Bahnen, Abh. Math. Sem. Univ. Hamburg, 3 (1924), 170-175. doi: 10.1007/BF02954622.

[4]

J. Bourdon, B. Daireaux and B. Vallée, Dynamical analysis of $\alpha$-Euclidean algorithms, J. Algorithms, 44 (2002), 246-285. doi: 10.1016/S0196-6774(02)00218-3.

[5]

C. Carminati and G.Tiozzo, A canonical thickening of $\Q$ and the dynamics of continued fractions,, preprint \arXiv{1004.3790v1}., (). 

[6]

G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers," sixth edition, Revised by D. R. Heath-Brown and J. H. Silverman, Oxford University Press, Oxford, 2008.

[7]

A. Hurwitz, Über eine besondere Art der Kettenbruch-Entwicklung reeler Grössen, (German), Acta Math., 12 (1889), 367-405. doi: 10.1007/BF02592188.

[8]

S. Katok, "Fuchsian Groups," Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992.

[9]

S. Katok, Coding of closed geodesics after Gauss and Morse, Geom. Dedicata, 63 (1996), 123-145. doi: 10.1007/BF00148213.

[10]

S. Katok and I. Ugarcovici, Arithmetic coding of geodesics on the modular surface via continued fractions, European women in mathematics-Marseille 2003, 59-77, CWI Tract, 135, Centrum Wisk. Inform., Amsterdam, (2005).

[11]

S. Katok, I. Ugarcovici, Geometrically Markov geodesics on the modular surface, Moscow Math. J. 5 (2005), 135-151.

[12]

S. Katok and I. Ugarcovici, Symbolic dynamics for the modular surface and beyond, Bull. Amer. Math. Soc., 44 (2007), 87-132. doi: 10.1090/S0273-0979-06-01115-3.

[13]

S. Katok and I. Ugarcovici, Theory of $(a,b)$-continued fraction transformations and applications, Electron. Res. Announc. Math. Sci., 17 (2010), 20-33. doi: 10.3934/era.2010.17.20.

[14]

S. Katok and I. Ugarcovici, Applications of $(a,b)$-continued fraction transformations,, in preparation., (). 

[15]

C. Kraaikamp, A new class of continued fraction expansions, Acta Arith., 57 (1991), 1-39.

[16]

L. Luzzi and S. Marmi, On the entropy of Japanese continued fractions, Discrete Cont. Dyn. Syst., 20 (2008), 673-711.

[17]

P. Moussa, A. Cassa and S. Marmi, Continued fractions and Brjuno functions, Continued fractions and geometric function theory (CONFUN) (Trondheim, 1997), J. Comput. Appl. Math., 105 (1999), 403-415. doi: 10.1016/S0377-0427(99)00029-1.

[18]

H. Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math., 4 (1981), 399-426. doi: 10.3836/tjm/1270215165.

[19]

H. Nakada and R. Natsui, Some metric properties of $\alpha$-continued fractions, Journal of Number Theory, 97 (2002), 287-300. doi: 10.1016/S0022-314X(02)00008-2.

[20]

H. Nakada and R. Natsui, The non-monotonicity of the entropy of $\alpha$-continued fraction transformations, Nonlinearity, 21 (2008) 1207-1225. doi: 10.1088/0951-7715/21/6/003.

[21]

C. Series, On coding geodesics with continued fractions, Ergodic theory (Sem., Les Plans-sur-Bex, 1980) (French), 67-76, Monograph. Enseign. Math., 29, Univ. Genéve, Geneva, (1981).

[22]

F. Schweiger, "Ergodic Theory of Fibred Systems and Metric Number Theory," Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.

[23]

D. Zagier, "Zetafunkionen und Quadratische Körper: Eine Einführung in die Höhere Zahlentheorie," Springer-Verlag, 1981.

[24]

R. Zweimüller, Ergodic structure and invariant densities of non-Markovian interval maps with indifferent fixed points, Nonlinearity, 11 (1998), 1263-1276. doi: 10.1088/0951-7715/11/5/005.

[1]

Doug Hensley. Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2417-2436. doi: 10.3934/dcds.2012.32.2417

[2]

Marc Kessböhmer, Bernd O. Stratmann. On the asymptotic behaviour of the Lebesgue measure of sum-level sets for continued fractions. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2437-2451. doi: 10.3934/dcds.2012.32.2437

[3]

Laura Luzzi, Stefano Marmi. On the entropy of Japanese continued fractions. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 673-711. doi: 10.3934/dcds.2008.20.673

[4]

Pierre Arnoux, Thomas A. Schmidt. Commensurable continued fractions. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4389-4418. doi: 10.3934/dcds.2014.34.4389

[5]

Claudio Bonanno, Carlo Carminati, Stefano Isola, Giulio Tiozzo. Dynamics of continued fractions and kneading sequences of unimodal maps. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1313-1332. doi: 10.3934/dcds.2013.33.1313

[6]

Élise Janvresse, Benoît Rittaud, Thierry de la Rue. Dynamics of $\lambda$-continued fractions and $\beta$-shifts. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1477-1498. doi: 10.3934/dcds.2013.33.1477

[7]

Lulu Fang, Min Wu. Hausdorff dimension of certain sets arising in Engel continued fractions. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2375-2393. doi: 10.3934/dcds.2018098

[8]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[9]

Kanji Inui, Hikaru Okada, Hiroki Sumi. The Hausdorff dimension function of the family of conformal iterated function systems of generalized complex continued fractions. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 753-766. doi: 10.3934/dcds.2020060

[10]

Petr Kůrka. On the measure attractor of a cellular automaton. Conference Publications, 2005, 2005 (Special) : 524-535. doi: 10.3934/proc.2005.2005.524

[11]

Jonathan C. Mattingly, Etienne Pardoux. Invariant measure selection by noise. An example. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4223-4257. doi: 10.3934/dcds.2014.34.4223

[12]

Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118.

[13]

Elena Goncharova, Maxim Staritsyn. On BV-extension of asymptotically constrained control-affine systems and complementarity problem for measure differential equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1061-1070. doi: 10.3934/dcdss.2018061

[14]

Simon Lloyd, Edson Vargas. Critical covering maps without absolutely continuous invariant probability measure. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2393-2412. doi: 10.3934/dcds.2019101

[15]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[16]

Paola Mannucci, Claudio Marchi, Nicoletta Tchou. Asymptotic behaviour for operators of Grushin type: Invariant measure and singular perturbations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (1) : 119-128. doi: 10.3934/dcdss.2019008

[17]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[18]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[19]

Zeqi Zhu, Caidi Zhao. Pullback attractor and invariant measures for the three-dimensional regularized MHD equations. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1461-1477. doi: 10.3934/dcds.2018060

[20]

Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207

2020 Impact Factor: 0.848

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]