\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Infinite translation surfaces with infinitely generated Veech groups

Abstract Related Papers Cited by
  • We study infinite translation surfaces which are $\ZZ$-covers of finite square-tiled surfaces obtained by a certain two-slit cut and paste construction. We show that if the finite translation surface has a one-cylinder decomposition in some direction, then the Veech group of the infinite translation surface is either a lattice or an infinitely generated group of the first kind. The square-tiled surfaces of genus two with one zero provide examples for finite translation surfaces that fulfill the prerequisites of the theorem.
    Mathematics Subject Classification: 30F35, 30F30, 14H30, 37D50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Bowman, "Flat Structures and Complex Structures in Teichmüller Theory," Thesis (Ph.D.)–Cornell University. ProQuest LLC, Ann Arbor, MI, 2009.

    [2]

    R. G. Burns and A. M. Brunner, Two remarks on the group property of Howson, Algebra Logic, 18 (1980), 319-325.doi: 10.1007/BF01673500.

    [3]

    R. Chamanara, Affine automorphism groups of surfaces of infinite type, In the tradition of Ahlfors and Bers, III, 123-145, Contemp. Math., 355, Amer. Math. Soc., Providence, RI, 2004.

    [4]

    E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic, Duke Math. J., 103 (2000), 191-213.doi: 10.1215/S0012-7094-00-10321-3.

    [5]

    F. Herrlich, Teichmüller curves defined by characteristic origamis, The geometry of Riemann surfaces and abelian varieties, 133-144, Contemp. Math., 397, Amer. Math. Soc., Providence, RI, 2006.

    [6]

    W. P. Hooper, Dynamics on an infinite surface with the lattice property, (2007) preprint, arXiv:0802.0189.

    [7]

    W. P. Hooper and B. Weiss, Generalized staircases: Recurrence and symmetry, to appear in Annales de L'Institut Fourier (2009).

    [8]

    P. Hubert and S. Lelièvre, Prime arithmetic Teichmüller discs in $H(2)$, Israel J. Math., 151 (2006), 281-321.doi: 10.1007/BF02777365.

    [9]

    P. Hubert and S. Lelièvre, Noncongruence subgroups in $H(2)$, Int. Math. Res. Not., (2005), 47-64.

    [10]

    P. Hubert and T. Schmidt, Infinitely generated Veech groups, Duke Math. J., 123 (2004), 49-69.doi: 10.1215/S0012-7094-04-12312-8.

    [11]

    P. Hubert and B. Weiss, Dynamics on the infinite staircase, (2008) preprint.

    [12]

    M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678.doi: 10.1007/s00222-003-0303-x.

    [13]

    S. Lelièvre and R. Silhol, Multi-geodesic tessellations, fractional Dehn twists and uniformization of algebraic curves, (2007) preprint, arXiv:math/0702374.

    [14]

    C. McMullen, Teichmüller geodesics of infinite complexity, Acta Math., 191 (2003), 191-223.doi: 10.1007/BF02392964.

    [15]

    P. Przytycki, G. Schmithüsen and F. ValdezVeech groups of Loch Ness monsters, to appear in Annales de l'Institut Fourier.

    [16]

    G. Schmithüsen, "Veech Groups of Origamis," Dissertation 2005, Universität Karlsruhe.

    [17]

    G. Schmithüsen, An algorithm for finding the Veech group of an origami, Experiment. Math., 13 (2004), 459-472.

    [18]

    G. Schmithüsen, Examples for Veech groups of origamis, The geometry of Riemann surfaces and abelian varieties, 193-206, Contemp. Math., 397, Amer. Math. Soc., Providence, RI, 2006.

    [19]

    G. Schmithüsen, Origamis with non-congruence Veech groups, Proceedings of 34th Symposium on Transformation Groups, 31-55, Wing Co., Wakayama, 2007.

    [20]

    F. Valdez, Billiards in polygons and homogeneous foliations on $\CC^2$, Ergod. Th. & Dynam. Sys., 29 (2009), 255-271.

    [21]

    F. Valdez, Veech groups, irrational billiards and stable abelian differentials, Preprint 2009, arXiv:0905.1591v2.

    [22]

    W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 553-583.doi: 10.1007/BF01388890.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(146) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return