- Previous Article
- JMD Home
- This Issue
-
Next Article
Infinite translation surfaces with infinitely generated Veech groups
Survival of infinitely many critical points for the Rabinowitz action functional
1. | Department of Mathematical Sciences, Seoul National University, Kwanakgu Shinrim, San56-1 Seoul, South Korea |
References:
[1] |
P. Albers and U. Frauenfelder, Leaf-wise intersections and Rabinowitz Floer homology, Journal of Topology and Analysis, 2 (2010), 77-98.
doi: 10.1142/S1793525310000276. |
[2] |
P. Albers and U. Frauenfelder, Infinitely many leaf-wise intersection points on cotangent bundles, (2008), arXiv:0812.4426. |
[3] |
P. Albers and U. Frauenfelder, Spectral invariants in Rabinowitz Floer homology and global Hamiltonian perturbation, Journal of Modern dynamics, 4 (2010), 329-357. |
[4] |
P. Albers and U. Frauenfelder, A remark on a theorem by Ekeland-Hofer, (2010), to appear in Israel Journal of Mathematics, arXiv:1001.3386. |
[5] |
P. Albers and A. Momin, Cup-length estimates for leaf-wise intersections, Mathematical Proceedings of the Cambridge Philosophical Society, 149 (2010), 539-551.
doi: 10.1017/S0305004110000435. |
[6] |
P. Albers and M. McLean, Non-displaceable contact embeddings and infinitely many leaf-wise intersections,, to appear in Journal of Symplectic Topology, ().
|
[7] |
A. Banyaga, Fixed points of symplectic maps, Invent. Math., 50 (1980), 215-229.
doi: 10.1007/BF01390045. |
[8] |
K. Cieliebak and U. Frauenfelder, A Floer homology for exact contact embeddings, Pacific J. Math., 239 (2009), 251.316.2 |
[9] |
K. Cieliebak and U. Frauenfelder, A. Oancea, Rabinowitz Floer homology and symplectic homology, to appear in Annales Scientifiques de LÉNS, (2009), arXiv:0903.0768. |
[10] |
D. L. Dragnev, Symplectic rigidity, symplectic fixed points and global perturbations of Hamiltonian systems, Comm. Pure Appl. Math., 61 (2008), 346-370.
doi: 10.1002/cpa.20203. |
[11] |
I. Ekeland and H. Hofer, Two symplectic fixed-point theorems with applications to Hamiltonian dynamics, J. Math. Pures Appl., 68 (1989), 467-489 (1990). |
[12] |
V. L. Ginzburg, Coisotropic intersections, Duke Math. J., 140 (2007), 111-163.
doi: 10.1215/S0012-7094-07-14014-6. |
[13] |
B. Gürel, Leafwise coisotropic intersections, Int. Math. Res. Not., (2010), 914-931. |
[14] |
J. Kang, Existence of leafwise intersection points in the unrestricted case, to appear in Israel Journal of Mathematics, (2009), arXiv:0910.2369 |
[15] |
J. Kang, Generalized Rabinowitz Floer homology and coisotropic intersections, (2010), arXiv:1003.1009. |
[16] |
J. Kang, Künneth formula in Rabinowitz Floer homology, (2010), arXiv:1006.0810. |
[17] |
W. Merry, On the Rabinowitz Floer homology of twisted cotangent bundles, to appear in Calc. Var. Partial Differential Equations, (2010), arXiv:1002.0162. |
[18] |
J. Moser, A fixed point theorem in symplectic geometry, Acta Math., 141 (1978), 17-34.
doi: 10.1007/BF02545741. |
[19] |
F. Ziltener, Coisotropic submanifolds, leafwise fixed points, and presymplectic embeddings, Journal of Symplectic Geom., 8 (2010), 95-118. |
show all references
References:
[1] |
P. Albers and U. Frauenfelder, Leaf-wise intersections and Rabinowitz Floer homology, Journal of Topology and Analysis, 2 (2010), 77-98.
doi: 10.1142/S1793525310000276. |
[2] |
P. Albers and U. Frauenfelder, Infinitely many leaf-wise intersection points on cotangent bundles, (2008), arXiv:0812.4426. |
[3] |
P. Albers and U. Frauenfelder, Spectral invariants in Rabinowitz Floer homology and global Hamiltonian perturbation, Journal of Modern dynamics, 4 (2010), 329-357. |
[4] |
P. Albers and U. Frauenfelder, A remark on a theorem by Ekeland-Hofer, (2010), to appear in Israel Journal of Mathematics, arXiv:1001.3386. |
[5] |
P. Albers and A. Momin, Cup-length estimates for leaf-wise intersections, Mathematical Proceedings of the Cambridge Philosophical Society, 149 (2010), 539-551.
doi: 10.1017/S0305004110000435. |
[6] |
P. Albers and M. McLean, Non-displaceable contact embeddings and infinitely many leaf-wise intersections,, to appear in Journal of Symplectic Topology, ().
|
[7] |
A. Banyaga, Fixed points of symplectic maps, Invent. Math., 50 (1980), 215-229.
doi: 10.1007/BF01390045. |
[8] |
K. Cieliebak and U. Frauenfelder, A Floer homology for exact contact embeddings, Pacific J. Math., 239 (2009), 251.316.2 |
[9] |
K. Cieliebak and U. Frauenfelder, A. Oancea, Rabinowitz Floer homology and symplectic homology, to appear in Annales Scientifiques de LÉNS, (2009), arXiv:0903.0768. |
[10] |
D. L. Dragnev, Symplectic rigidity, symplectic fixed points and global perturbations of Hamiltonian systems, Comm. Pure Appl. Math., 61 (2008), 346-370.
doi: 10.1002/cpa.20203. |
[11] |
I. Ekeland and H. Hofer, Two symplectic fixed-point theorems with applications to Hamiltonian dynamics, J. Math. Pures Appl., 68 (1989), 467-489 (1990). |
[12] |
V. L. Ginzburg, Coisotropic intersections, Duke Math. J., 140 (2007), 111-163.
doi: 10.1215/S0012-7094-07-14014-6. |
[13] |
B. Gürel, Leafwise coisotropic intersections, Int. Math. Res. Not., (2010), 914-931. |
[14] |
J. Kang, Existence of leafwise intersection points in the unrestricted case, to appear in Israel Journal of Mathematics, (2009), arXiv:0910.2369 |
[15] |
J. Kang, Generalized Rabinowitz Floer homology and coisotropic intersections, (2010), arXiv:1003.1009. |
[16] |
J. Kang, Künneth formula in Rabinowitz Floer homology, (2010), arXiv:1006.0810. |
[17] |
W. Merry, On the Rabinowitz Floer homology of twisted cotangent bundles, to appear in Calc. Var. Partial Differential Equations, (2010), arXiv:1002.0162. |
[18] |
J. Moser, A fixed point theorem in symplectic geometry, Acta Math., 141 (1978), 17-34.
doi: 10.1007/BF02545741. |
[19] |
F. Ziltener, Coisotropic submanifolds, leafwise fixed points, and presymplectic embeddings, Journal of Symplectic Geom., 8 (2010), 95-118. |
[1] |
Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, 2021, 29 (4) : 2553-2560. doi: 10.3934/era.2021001 |
[2] |
Alexander Fauck, Will J. Merry, Jagna Wiśniewska. Computing the Rabinowitz Floer homology of tentacular hyperboloids. Journal of Modern Dynamics, 2021, 17: 353-399. doi: 10.3934/jmd.2021013 |
[3] |
Peter Albers, Urs Frauenfelder. Spectral invariants in Rabinowitz-Floer homology and global Hamiltonian perturbations. Journal of Modern Dynamics, 2010, 4 (2) : 329-357. doi: 10.3934/jmd.2010.4.329 |
[4] |
Sonja Hohloch. Transport, flux and growth of homoclinic Floer homology. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3587-3620. doi: 10.3934/dcds.2012.32.3587 |
[5] |
Michael Usher. Floer homology in disk bundles and symplectically twisted geodesic flows. Journal of Modern Dynamics, 2009, 3 (1) : 61-101. doi: 10.3934/jmd.2009.3.61 |
[6] |
Peter Albers, Urs Frauenfelder. Floer homology for negative line bundles and Reeb chords in prequantization spaces. Journal of Modern Dynamics, 2009, 3 (3) : 407-456. doi: 10.3934/jmd.2009.3.407 |
[7] |
Radu Saghin. Note on homology of expanding foliations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 349-360. doi: 10.3934/dcdss.2009.2.349 |
[8] |
Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249 |
[9] |
Zhihong Xia. Homoclinic points and intersections of Lagrangian submanifold. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 243-253. doi: 10.3934/dcds.2000.6.243 |
[10] |
Octav Cornea and Francois Lalonde. Cluster homology: An overview of the construction and results. Electronic Research Announcements, 2006, 12: 1-12. |
[11] |
Michihiro Hirayama, Naoya Sumi. Hyperbolic measures with transverse intersections of stable and unstable manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1451-1476. doi: 10.3934/dcds.2013.33.1451 |
[12] |
Françoise Pène. Self-intersections of trajectories of the Lorentz process. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4781-4806. doi: 10.3934/dcds.2014.34.4781 |
[13] |
Michael Herty, J.-P. Lebacque, S. Moutari. A novel model for intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2009, 4 (4) : 813-826. doi: 10.3934/nhm.2009.4.813 |
[14] |
Jianbo Wang. Remarks on 5-dimensional complete intersections. Electronic Research Announcements, 2014, 21: 28-40. doi: 10.3934/era.2014.21.28 |
[15] |
Michael Herty, S. Moutari, M. Rascle. Optimization criteria for modelling intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2006, 1 (2) : 275-294. doi: 10.3934/nhm.2006.1.275 |
[16] |
Sarah Day; William D. Kalies; Konstantin Mischaikow and Thomas Wanner. Probabilistic and numerical validation of homology computations for nodal domains. Electronic Research Announcements, 2007, 13: 60-73. |
[17] |
Al Momin. Contact homology of orbit complements and implied existence. Journal of Modern Dynamics, 2011, 5 (3) : 409-472. doi: 10.3934/jmd.2011.5.409 |
[18] |
Mark Pollicott. Closed orbits and homology for $C^2$-flows. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 529-534. doi: 10.3934/dcds.1999.5.529 |
[19] |
Vincenzo Ambrosio. Periodic solutions for a superlinear fractional problem without the Ambrosetti-Rabinowitz condition. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2265-2284. doi: 10.3934/dcds.2017099 |
[20] |
Nicolas Augier, Ugo Boscain, Mario Sigalotti. Semi-conical eigenvalue intersections and the ensemble controllability problem for quantum systems. Mathematical Control and Related Fields, 2020, 10 (4) : 877-911. doi: 10.3934/mcrf.2020023 |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]