\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The Khinchin Theorem for interval-exchange transformations

Abstract Related Papers Cited by
  • We define a Diophantine condition for interval-exchange transformations. When the number of intervals is two, that is, for rotations on the circle, our condition coincides with the classical Khinchin condition. We prove for interval-exchange transformations the same dichotomy as in the Khinchin Theorem. We also develop several results relating the Rauzy-Veech algorithm with homogeneous approximations for interval-exchange transformations.
    Mathematics Subject Classification: Primary: 37A20, 37E05; Secondary: 32G15, 11K55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Avila, S. Gouëzel and J.-C. Yoccoz, Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci., 104 (2006), 143-211.

    [2]

    A. Avila and M. J.ResendeExponential mixing for the Teichmüller flow in the space of quadratic differentials, preprint arXiv:0908.1102.

    [3]

    A. Avila and M. Viana, Simplicity of Lyapunov spectra: Proof of the Zorich-Kontsevich conjecture, Acta Mathematica, 198 (2007), 1-56.doi: 10.1007/s11511-007-0012-1.

    [4]

    P. Billingsley, Probability and measure, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York-Chichester-Brisbane, 1979.

    [5]

    C. Boissy and E. Lanneau, Dynamics and geometry of the Rauzy-Veech induction for quadratic differentials, Ergodic Theory Dynam. Systems, 29 (2009), 767-816.doi: 10.1017/S0143385708080565.

    [6]

    M. Boshernitzan, Rank two interval-exchange transformations, Ergodic Theory Dynam. Systems, 8 (1988), 379-394.

    [7]

    M. Boshernitzan and J. ChaikaDiophantine properties of IET and general systems: Quantitative proximality and connectivity, preprint arXiv:0910.5422.

    [8]

    J. ChaikaShrinking targets for IETs: Extending a theorem of Kurzweil, preprint arXiv:0910.2694.

    [9]

    C. Danthony and A. Nogueira, Involutions linéaires et feuilletages mesurés, (French) [Linear involutions and measured foliations], C. R. Acad. Sci. Paris Sér I Math., 307(1988), 409-412.

    [10]

    G. H. Hardy and E. M. Wright, "An introduction to the Theory of Numbers,'' 3rd ed., Oxford, at the Clarendon Press, 1954.

    [11]

    M. Keane, Interval-exchange transformations, Math. Z., 141 (2002), 25-31.doi: 10.1007/BF01236981.

    [12]

    S. P. Kerckhoff, Symplicial systems for interval-exchange maps and measured foliations, Ergodic Theory Dynam Systems, 5 (1985), 257-271.doi: 10.1017/S0143385700002881.

    [13]

    Khinchin, "Continued Fractions,'' Translated by Peter Wynn. P. Noordhoff, Ltd., Groningen 1963 iii+101 pp.

    [14]

    M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153(2003), 631-678.doi: 10.1007/s00222-003-0303-x.

    [15]

    L. Marchese, "The Khinchin Theorem for Intervals Exchange Transformations and its Consequences for the Teichmüller Flow,'' PhD thesis.

    [16]

    L. MarcheseKhinchin type condition for translation surfaces and asymptotic laws for the Teichmüller flow, to appear in Bull. Soc. Math. France.

    [17]

    S. Marmi, P. Moussa and J.-C.Yoccoz, The cohomological equation for Roth type interval-exchange maps, J. American Math. Soc., 18 (2005), 823-872.doi: 10.1090/S0894-0347-05-00490-X.

    [18]

    H. Masur, Interval exchange transformation and measured foliations, Ann. of Math. (2) , 115 (1982), 169-200,.doi: 10.2307/1971341.

    [19]

    H. Masur, Logarithmic law for geodesic in moduli space, Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991), 229-245, Contemp. Math., 150, Amer. Math. Soc., Providence, RI, 1993.

    [20]

    G. Rauzy, Échanges d'intervalles et transformations induites, (French) Acta Arith., 34 (1979), 315-328.

    [21]

    W. Veech, Interval exchange transformations, J. Analyse Math., 33 (1978), 222-272.doi: 10.1007/BF02790174.

    [22]

    W. Veech, Gauss measures for transformations on the space of interval-exchange maps, Annals of Mathematics (2), 115 (1982), 201-242.doi: 10.2307/1971391.

    [23]

    J.-C. Yoccoz, "Echanges d'Intervalles,'' Cours Coll\`ege de France, Janvier-Mars, 2005.

    [24]

    J.-C. Yoccoz, Interval-exchange maps and translation surfaces, CMI summer school course, Centro di ricerca matematica Ennio de Giorgi, Pisa, June-July 2007 (in preparation).

    [25]

    A. Zorich, Finite Gauss measure on the space of interval-exchange transformations. Lyapunov exponents, Annales de l'Institut Fourier (Grenoble), 46 (1996), 325-370.

    [26]

    A. Zorich, Flat surfaces, Frontiers in Number Theory, Physics and Geometry, Vol. 1, 437-583, Springer, Berlin, (2006).

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return