- Previous Article
- JMD Home
- This Issue
-
Next Article
A geometric criterion for the nonuniform hyperbolicity of the Kontsevich--Zorich cocycle
New light on solving the sextic by iteration: An algorithm using reliable dynamics
1. | Mathematics Department, The California State University at Long Beach, Long Beach, CA 90840-1001 |
One such group is the Valentiner action $\mathcal{V}$---isomorphic to the alternating group $\mathcal{A}_6$---on the complex projective plane. A previous algorithm that solved sixth-degree equations harnessed the dynamics of a $\mathcal{V}$-equivariant. However, important global dynamical properties of this map were unproven. Revisiting the question in light of the reflection group conjecture led to the discovery of a degree-31 map that is critical on the 45 lines of reflection for $\mathcal{V}$. The map's critical finiteness provides a means of proving its possession of the previous elusive global properties. Finally, a sextic-solving procedure that employs this map's reliable dynamics is developed.
References:
[1] |
S. Crass and P. Doyle, Solving the sextic by iteration: A complex dynamical approach, Internat. Math. Res. Notices, (1997), 83-99.
doi: 10.1155/S1073792897000068. |
[2] |
S. Crass, Solving the sextic by iteration: A study in complex geometry and dynamics, Experiment. Math., 8 (1999), 209-240. Preprint at: http://arxiv.org/abs/math.DS/9903111. |
[3] |
S. Crass, A family of critically finite maps with symmetry, Publ. Mat., 49 (2005), 127-157. Preprint at: http://arxiv.org/abs/math.DS/0307057. |
[4] |
S. Crass, Solving the heptic by iteration in two dimensions: Geometry and dynamics under Klein's group of order 168, J. Mod. Dyn., 1 (2007), 175-203.
doi: 10.3934/jmd.2007.1.175. |
[5] |
, S. Crass, Available from: http://www.csulb.edu/~scrass/math.html |
[6] |
J. E. Fornaess and N. Sibony, Complex dynamics in higher dimension I, Complex analytic methods in dynamical systems (Rio de Janeiro, 1992), Astérisque, 222 (1994), 201-231. |
[7] |
C. McMullen, Julia, (computer program). Available from: http://www.math.harvard.edu/~ctm/programs.html |
[8] |
H. Nusse and J. Yorke, "Dynamics: Numerical Explorations," Second edition. Accompanying computer program Dynamics 2 coauthored by Brian R. Hunt and Eric J. Kostelich, With 1 IBM-PC floppy disk (3.5 inch; HD). Applied Mathematical Sciences, 101. Springer-Verlag, New York, 1998. |
[9] |
G. Shephard and T. Todd, Finite unitary reflection groups, Canad. J. Math., 6 (1954), 274-304.
doi: 10.4153/CJM-1954-028-3. |
[10] |
K. Ueno, Dynamics of symmetric holomorphic maps on projective spaces, Publ. Mat., 51 (2007), 333-344. |
show all references
References:
[1] |
S. Crass and P. Doyle, Solving the sextic by iteration: A complex dynamical approach, Internat. Math. Res. Notices, (1997), 83-99.
doi: 10.1155/S1073792897000068. |
[2] |
S. Crass, Solving the sextic by iteration: A study in complex geometry and dynamics, Experiment. Math., 8 (1999), 209-240. Preprint at: http://arxiv.org/abs/math.DS/9903111. |
[3] |
S. Crass, A family of critically finite maps with symmetry, Publ. Mat., 49 (2005), 127-157. Preprint at: http://arxiv.org/abs/math.DS/0307057. |
[4] |
S. Crass, Solving the heptic by iteration in two dimensions: Geometry and dynamics under Klein's group of order 168, J. Mod. Dyn., 1 (2007), 175-203.
doi: 10.3934/jmd.2007.1.175. |
[5] |
, S. Crass, Available from: http://www.csulb.edu/~scrass/math.html |
[6] |
J. E. Fornaess and N. Sibony, Complex dynamics in higher dimension I, Complex analytic methods in dynamical systems (Rio de Janeiro, 1992), Astérisque, 222 (1994), 201-231. |
[7] |
C. McMullen, Julia, (computer program). Available from: http://www.math.harvard.edu/~ctm/programs.html |
[8] |
H. Nusse and J. Yorke, "Dynamics: Numerical Explorations," Second edition. Accompanying computer program Dynamics 2 coauthored by Brian R. Hunt and Eric J. Kostelich, With 1 IBM-PC floppy disk (3.5 inch; HD). Applied Mathematical Sciences, 101. Springer-Verlag, New York, 1998. |
[9] |
G. Shephard and T. Todd, Finite unitary reflection groups, Canad. J. Math., 6 (1954), 274-304.
doi: 10.4153/CJM-1954-028-3. |
[10] |
K. Ueno, Dynamics of symmetric holomorphic maps on projective spaces, Publ. Mat., 51 (2007), 333-344. |
[1] |
Alexander Moreto. Complex group algebras of finite groups: Brauer's Problem 1. Electronic Research Announcements, 2005, 11: 34-39. |
[2] |
Terasan Niyomsataya, Ali Miri, Monica Nevins. Decoding affine reflection group codes with trellises. Advances in Mathematics of Communications, 2012, 6 (4) : 385-400. doi: 10.3934/amc.2012.6.385 |
[3] |
Eldho K. Thomas, Nadya Markin, Frédérique Oggier. On Abelian group representability of finite groups. Advances in Mathematics of Communications, 2014, 8 (2) : 139-152. doi: 10.3934/amc.2014.8.139 |
[4] |
Jianghong Bao. Complex dynamics in the segmented disc dynamo. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3301-3314. doi: 10.3934/dcdsb.2016098 |
[5] |
Xu Zhang, Guanrong Chen. Polynomial maps with hidden complex dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2941-2954. doi: 10.3934/dcdsb.2018293 |
[6] |
Mike Boyle, Sompong Chuysurichay. The mapping class group of a shift of finite type. Journal of Modern Dynamics, 2018, 13: 115-145. doi: 10.3934/jmd.2018014 |
[7] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[8] |
Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495 |
[9] |
John Fogarty. On Noether's bound for polynomial invariants of a finite group. Electronic Research Announcements, 2001, 7: 5-7. |
[10] |
James Benn. Fredholm properties of the $L^{2}$ exponential map on the symplectomorphism group. Journal of Geometric Mechanics, 2016, 8 (1) : 1-12. doi: 10.3934/jgm.2016.8.1 |
[11] |
Bastian Laubner, Dierk Schleicher, Vlad Vicol. A combinatorial classification of postsingularly finite complex exponential maps. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 663-682. doi: 10.3934/dcds.2008.22.663 |
[12] |
Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033 |
[13] |
Jason Atnip, Mariusz Urbański. Critically finite random maps of an interval. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4839-4906. doi: 10.3934/dcds.2020204 |
[14] |
Jeffrey J. Early, Juha Pohjanpelto, Roger M. Samelson. Group foliation of equations in geophysical fluid dynamics. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1571-1586. doi: 10.3934/dcds.2010.27.1571 |
[15] |
Mahesh Nerurkar. Forced linear oscillators and the dynamics of Euclidean group extensions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1201-1234. doi: 10.3934/dcdss.2016049 |
[16] |
Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1393-1404. doi: 10.3934/dcdsb.2015.20.1393 |
[17] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3295-3317. doi: 10.3934/dcds.2020406 |
[18] |
Shmuel Friedland, Gunter Ochs. Hausdorff dimension, strong hyperbolicity and complex dynamics. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 405-430. doi: 10.3934/dcds.1998.4.405 |
[19] |
Antonio Ambrosetti, Massimiliano Berti. Applications of critical point theory to homoclinics and complex dynamics. Conference Publications, 1998, 1998 (Special) : 72-78. doi: 10.3934/proc.1998.1998.72 |
[20] |
Jianquan Li, Yicang Zhou, Jianhong Wu, Zhien Ma. Complex dynamics of a simple epidemic model with a nonlinear incidence. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 161-173. doi: 10.3934/dcdsb.2007.8.161 |
2021 Impact Factor: 0.641
Tools
Metrics
Other articles
by authors
[Back to Top]