-
Previous Article
Outer billiards on the Penrose kite: Compactification and renormalization
- JMD Home
- This Issue
- Next Article
Contact homology of orbit complements and implied existence
1. | Department of Mathematics, Purdue University, 150 N. University St. , West Lafayette, IN 47906, United States |
References:
[1] |
Sigurd B. Angenent, Curve shortening and the topology of closed geodesics on surfaces, Ann. of Math. (2), 162 (2005), 1187-1241. |
[2] |
Frédéric Bourgeois, Kai Cieliebak and Tobias Ekholm, A note on Reeb dynamics on the tight 3-sphere, J. Mod. Dyn., 1 (2007), 597-613.
doi: 10.3934/jmd.2007.1.597. |
[3] |
F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki and E. Zehnder, Compactness results in symplectic field theory, Geom. Topol., 7 (2003), 799-888.
doi: 10.2140/gt.2003.7.799. |
[4] |
Frédéric Bourgeois and Klaus Mohnke, Coherent orientations in symplectic field theory, Math. Z., 248 (2004), 123-146. |
[5] |
Frédéric Bourgeois, "A Morse-Bott Approach to Contact Homology," Ph.D. thesis, Stanford University, 2002. |
[6] |
Frédéric Bourgeois, Contact homology and homotopy groups of the space of contact structures, Math. Res. Lett., 13 (2006), 71-85. |
[7] |
Andrew Cotton-Clay, Symplectic Floer homology of area-preserving surface diffeomorphisms, Geom. Topol., 13 (2009), 2619-2674. |
[8] |
V. Colin, P. Ghiggini, K. Honda and M. Hutchings, Sutures and contact homology I, arXiv:1004.2942, 2010. |
[9] |
V. Colin and K. Honda, Reeb vector fields and open book decompositions,, \arXiv{0809.5088}., ().
|
[10] |
Vincent Colin and Ko Honda, Stabilizing the monodromy of an open book decomposition, Geom. Dedicata, 132 (2008), 95-103.
doi: 10.1007/s10711-007-9165-5. |
[11] |
Vincent Colin, Ko Honda and François Laudenbach, On the flux of pseudo-Anosov homeomorphisms, Algebr. Geom. Topol., 8 (2008), 2147-2160.
doi: 10.2140/agt.2008.8.2147. |
[12] |
J. C. Cha and C. Livingston, Knotinfo: Table of knot invariants. Available from:, \url{http://www.indiana.edu/~knotinfo}., ().
|
[13] |
Dragomir L. Dragnev, Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations, Comm. Pure Appl. Math., 57 (2004), 726-763.
doi: 10.1002/cpa.20018. |
[14] |
Y. Eliashberg, A. Givental and H. Hofer, Introduction to symplectic field theory, GAFA 2000 (Tel Aviv, 1999), in "Geom. Funct. Anal. 2000," Special Volume, Part II, 560-673. |
[15] |
John B. Etnyre and Jeremy Van Horn-Morris, Fibered transverse knots and the Bennequin bound, International Mathematics Research Notices, 2011 (2011), 1483-1509. |
[16] |
Yakov Eliashberg, Sang Seon Kim and Leonid Polterovich, Geometry of contact transformations and domains: Orderability versus squeezing, Geom. Topol., 10 (2006), 1635-1747. |
[17] |
Andreas Floer, Helmut Hofer and Dietmar Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J., 80 (1995), 251-292.
doi: 10.1215/S0012-7094-95-08010-7. |
[18] |
John Franks, Geodesics on $S^2$ and periodic points of annulus homeomorphisms, Invent. Math., 108 (1992), 403-418.
doi: 10.1007/BF02100612. |
[19] |
David Gabai, Detecting fibred links in $S^3$, Comment. Math. Helv., 61 (1986), 519-555.
doi: 10.1007/BF02621931. |
[20] |
Hansjörg Geiges, "An Introduction to Contact Topology," Cambridge Studies in Advanced Mathematics, 109, Cambridge University Press, Cambridge, 2008.
doi: 10.1017/CBO9780511611438. |
[21] |
E. Giroux, Géométrie de contact: De la dimension trois vers les dimensions supérieures, in "Proceedings of the International Congress of Mathematicians," Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, (2002), 405-414. |
[22] |
R. W. Ghrist, J. B. Van den Berg and R. C. Vandervorst, Morse theory on spaces of braids and Lagrangian dynamics, Invent. Math., 152 (2003), 369-432.
doi: 10.1007/s00222-002-0277-0. |
[23] |
R. W. Ghrist, J. B. Van den Berg, R. C. Vandervorst and W. Wójcik, Braid Floer homology,, \arXiv{0910.0647}., ().
|
[24] |
Matthew Hedden, An Ozsváth-Szabó Floer homology invariant of knots in a contact manifold, Adv. Math., 219 (2008), 89-117.
doi: 10.1016/j.aim.2008.04.007. |
[25] |
Umberto Hryniewicz, Al Momin and Pedro Salomão, A Poincaré-Birkhoff Theorem for Reeb flows on $S^3$,, preprint, ().
|
[26] |
Adam Harris and Gabriel P. Paternain, Dynamically convex Finsler metrics and $J$-holomorphic embedding of asymptotic cylinders, Ann. Global Anal. Geom., 34 (2008), 115-134.
doi: 10.1007/s10455-008-9111-2. |
[27] |
U. Hryniewicz and P. A. S. Salomão, On the existence of disk-like global sections for Reeb flows on the tight 3-sphere,, to appear in Duke Mathematical Journal., ().
|
[28] |
Michael Hutchings, An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. (JEMS), 4 (2002), 313-361.
doi: 10.1007/s100970100041. |
[29] |
H. Hofer, K. Wysocki and E. Zehnder, Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants, Geom. Funct. Anal., 5 (1995), 270-328.
doi: 10.1007/BF01895669. |
[30] |
_____, Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 337-379. |
[31] |
_____, The dynamics on three-dimensional strictly convex energy surfaces, Ann. of Math. (2), 148 (1998), 197-289. |
[32] |
_____, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. (2), 157 (2003), 125-255. |
[33] |
Helmut Hofer and Eduard Zehnder, "Symplectic Invariants and Hamiltonian Dynamics," Birkhäuser Advanced Texts: Basler Lehrbücher, [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 1994. |
[34] |
A. B. Katok, Ergodic perturbations of degenerate integrable Hamiltonian systems, Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973), 539-576. |
[35] |
Dusa McDuff, The local behaviour of holomorphic curves in almost complex 4-manifolds, J. Differential Geom., 34 (1991), 143-164. |
[36] |
Mario J. Micallef and Brian White, The structure of branch points in minimal surfaces and in pseudoholomorphic curves, Ann. of Math. (2), 141 (1995), 35-85. |
[37] |
Yi Ni, Knot Floer homology detects fibred knots, Invent. Math., 170 (2007), 577-608.
doi: 10.1007/s00222-007-0075-9. |
[38] |
Matthias Schwarz, "Cohomology Operations from $S^1$-Cobordisms in Floer Homology," Ph.D. thesis, ETH Zurich, 1995. |
[39] |
R. Siefring, Intersection theory of punctured pseudoholomorphic curves,, to appear in Geometry & Topology, ().
|
[40] |
Richard Siefring, Relative asymptotic behavior of pseudoholomorphic half-cylinders, Comm. Pure Appl. Math., 61 (2008), 1631-1684.
doi: 10.1002/cpa.20224. |
[41] |
W. P. Thurston, Hyperbolic Structures on 3-manifolds, II: Surface groups and 3-manifolds which fiber over the circle, arXiv:math/9801045, 1998. |
[42] |
W. P. Thurston and H. E. Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc., 52 (1975), 345-347.
doi: 10.1090/S0002-9939-1975-0375366-7. |
[43] |
Chris Wendl, Automatic transversality and orbifolds of punctured holomorphic curves in dimension four, Comment. Math. Helv., 85 (2010), 347-407. |
show all references
References:
[1] |
Sigurd B. Angenent, Curve shortening and the topology of closed geodesics on surfaces, Ann. of Math. (2), 162 (2005), 1187-1241. |
[2] |
Frédéric Bourgeois, Kai Cieliebak and Tobias Ekholm, A note on Reeb dynamics on the tight 3-sphere, J. Mod. Dyn., 1 (2007), 597-613.
doi: 10.3934/jmd.2007.1.597. |
[3] |
F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki and E. Zehnder, Compactness results in symplectic field theory, Geom. Topol., 7 (2003), 799-888.
doi: 10.2140/gt.2003.7.799. |
[4] |
Frédéric Bourgeois and Klaus Mohnke, Coherent orientations in symplectic field theory, Math. Z., 248 (2004), 123-146. |
[5] |
Frédéric Bourgeois, "A Morse-Bott Approach to Contact Homology," Ph.D. thesis, Stanford University, 2002. |
[6] |
Frédéric Bourgeois, Contact homology and homotopy groups of the space of contact structures, Math. Res. Lett., 13 (2006), 71-85. |
[7] |
Andrew Cotton-Clay, Symplectic Floer homology of area-preserving surface diffeomorphisms, Geom. Topol., 13 (2009), 2619-2674. |
[8] |
V. Colin, P. Ghiggini, K. Honda and M. Hutchings, Sutures and contact homology I, arXiv:1004.2942, 2010. |
[9] |
V. Colin and K. Honda, Reeb vector fields and open book decompositions,, \arXiv{0809.5088}., ().
|
[10] |
Vincent Colin and Ko Honda, Stabilizing the monodromy of an open book decomposition, Geom. Dedicata, 132 (2008), 95-103.
doi: 10.1007/s10711-007-9165-5. |
[11] |
Vincent Colin, Ko Honda and François Laudenbach, On the flux of pseudo-Anosov homeomorphisms, Algebr. Geom. Topol., 8 (2008), 2147-2160.
doi: 10.2140/agt.2008.8.2147. |
[12] |
J. C. Cha and C. Livingston, Knotinfo: Table of knot invariants. Available from:, \url{http://www.indiana.edu/~knotinfo}., ().
|
[13] |
Dragomir L. Dragnev, Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations, Comm. Pure Appl. Math., 57 (2004), 726-763.
doi: 10.1002/cpa.20018. |
[14] |
Y. Eliashberg, A. Givental and H. Hofer, Introduction to symplectic field theory, GAFA 2000 (Tel Aviv, 1999), in "Geom. Funct. Anal. 2000," Special Volume, Part II, 560-673. |
[15] |
John B. Etnyre and Jeremy Van Horn-Morris, Fibered transverse knots and the Bennequin bound, International Mathematics Research Notices, 2011 (2011), 1483-1509. |
[16] |
Yakov Eliashberg, Sang Seon Kim and Leonid Polterovich, Geometry of contact transformations and domains: Orderability versus squeezing, Geom. Topol., 10 (2006), 1635-1747. |
[17] |
Andreas Floer, Helmut Hofer and Dietmar Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J., 80 (1995), 251-292.
doi: 10.1215/S0012-7094-95-08010-7. |
[18] |
John Franks, Geodesics on $S^2$ and periodic points of annulus homeomorphisms, Invent. Math., 108 (1992), 403-418.
doi: 10.1007/BF02100612. |
[19] |
David Gabai, Detecting fibred links in $S^3$, Comment. Math. Helv., 61 (1986), 519-555.
doi: 10.1007/BF02621931. |
[20] |
Hansjörg Geiges, "An Introduction to Contact Topology," Cambridge Studies in Advanced Mathematics, 109, Cambridge University Press, Cambridge, 2008.
doi: 10.1017/CBO9780511611438. |
[21] |
E. Giroux, Géométrie de contact: De la dimension trois vers les dimensions supérieures, in "Proceedings of the International Congress of Mathematicians," Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, (2002), 405-414. |
[22] |
R. W. Ghrist, J. B. Van den Berg and R. C. Vandervorst, Morse theory on spaces of braids and Lagrangian dynamics, Invent. Math., 152 (2003), 369-432.
doi: 10.1007/s00222-002-0277-0. |
[23] |
R. W. Ghrist, J. B. Van den Berg, R. C. Vandervorst and W. Wójcik, Braid Floer homology,, \arXiv{0910.0647}., ().
|
[24] |
Matthew Hedden, An Ozsváth-Szabó Floer homology invariant of knots in a contact manifold, Adv. Math., 219 (2008), 89-117.
doi: 10.1016/j.aim.2008.04.007. |
[25] |
Umberto Hryniewicz, Al Momin and Pedro Salomão, A Poincaré-Birkhoff Theorem for Reeb flows on $S^3$,, preprint, ().
|
[26] |
Adam Harris and Gabriel P. Paternain, Dynamically convex Finsler metrics and $J$-holomorphic embedding of asymptotic cylinders, Ann. Global Anal. Geom., 34 (2008), 115-134.
doi: 10.1007/s10455-008-9111-2. |
[27] |
U. Hryniewicz and P. A. S. Salomão, On the existence of disk-like global sections for Reeb flows on the tight 3-sphere,, to appear in Duke Mathematical Journal., ().
|
[28] |
Michael Hutchings, An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. (JEMS), 4 (2002), 313-361.
doi: 10.1007/s100970100041. |
[29] |
H. Hofer, K. Wysocki and E. Zehnder, Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants, Geom. Funct. Anal., 5 (1995), 270-328.
doi: 10.1007/BF01895669. |
[30] |
_____, Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 337-379. |
[31] |
_____, The dynamics on three-dimensional strictly convex energy surfaces, Ann. of Math. (2), 148 (1998), 197-289. |
[32] |
_____, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. (2), 157 (2003), 125-255. |
[33] |
Helmut Hofer and Eduard Zehnder, "Symplectic Invariants and Hamiltonian Dynamics," Birkhäuser Advanced Texts: Basler Lehrbücher, [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 1994. |
[34] |
A. B. Katok, Ergodic perturbations of degenerate integrable Hamiltonian systems, Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973), 539-576. |
[35] |
Dusa McDuff, The local behaviour of holomorphic curves in almost complex 4-manifolds, J. Differential Geom., 34 (1991), 143-164. |
[36] |
Mario J. Micallef and Brian White, The structure of branch points in minimal surfaces and in pseudoholomorphic curves, Ann. of Math. (2), 141 (1995), 35-85. |
[37] |
Yi Ni, Knot Floer homology detects fibred knots, Invent. Math., 170 (2007), 577-608.
doi: 10.1007/s00222-007-0075-9. |
[38] |
Matthias Schwarz, "Cohomology Operations from $S^1$-Cobordisms in Floer Homology," Ph.D. thesis, ETH Zurich, 1995. |
[39] |
R. Siefring, Intersection theory of punctured pseudoholomorphic curves,, to appear in Geometry & Topology, ().
|
[40] |
Richard Siefring, Relative asymptotic behavior of pseudoholomorphic half-cylinders, Comm. Pure Appl. Math., 61 (2008), 1631-1684.
doi: 10.1002/cpa.20224. |
[41] |
W. P. Thurston, Hyperbolic Structures on 3-manifolds, II: Surface groups and 3-manifolds which fiber over the circle, arXiv:math/9801045, 1998. |
[42] |
W. P. Thurston and H. E. Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc., 52 (1975), 345-347.
doi: 10.1090/S0002-9939-1975-0375366-7. |
[43] |
Chris Wendl, Automatic transversality and orbifolds of punctured holomorphic curves in dimension four, Comment. Math. Helv., 85 (2010), 347-407. |
[1] |
Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481 |
[2] |
Angela Aguglia, Antonio Cossidente, Giuseppe Marino, Francesco Pavese, Alessandro Siciliano. Orbit codes from forms on vector spaces over a finite field. Advances in Mathematics of Communications, 2022, 16 (1) : 135-155. doi: 10.3934/amc.2020105 |
[3] |
Lisa C. Jeffrey and Frances C. Kirwan. Intersection pairings in moduli spaces of holomorphic bundles on a Riemann surface. Electronic Research Announcements, 1995, 1: 57-71. |
[4] |
Peter Albers, Urs Frauenfelder. Floer homology for negative line bundles and Reeb chords in prequantization spaces. Journal of Modern Dynamics, 2009, 3 (3) : 407-456. doi: 10.3934/jmd.2009.3.407 |
[5] |
João Paulo da Silva, Julio López, Ricardo Dahab. Isogeny formulas for Jacobi intersection and twisted hessian curves. Advances in Mathematics of Communications, 2020, 14 (3) : 507-523. doi: 10.3934/amc.2020048 |
[6] |
Peter Albers, Jean Gutt, Doris Hein. Periodic Reeb orbits on prequantization bundles. Journal of Modern Dynamics, 2018, 12: 123-150. doi: 10.3934/jmd.2018005 |
[7] |
John Erik Fornæss. Periodic points of holomorphic twist maps. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1047-1056. doi: 10.3934/dcds.2005.13.1047 |
[8] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[9] |
Marcelo R. R. Alves. Positive topological entropy for Reeb flows on 3-dimensional Anosov contact manifolds. Journal of Modern Dynamics, 2016, 10: 497-509. doi: 10.3934/jmd.2016.10.497 |
[10] |
Kei Irie. Dense existence of periodic Reeb orbits and ECH spectral invariants. Journal of Modern Dynamics, 2015, 9: 357-363. doi: 10.3934/jmd.2015.9.357 |
[11] |
W. Layton, Iuliana Stanculescu, Catalin Trenchea. Theory of the NS-$\overline{\omega}$ model: A complement to the NS-$\alpha$ model. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1763-1777. doi: 10.3934/cpaa.2011.10.1763 |
[12] |
Franz W. Kamber and Peter W. Michor. The flow completion of a manifold with vector field. Electronic Research Announcements, 2000, 6: 95-97. |
[13] |
Jifeng Chu, Zhaosheng Feng, Ming Li. Periodic shadowing of vector fields. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3623-3638. doi: 10.3934/dcds.2016.36.3623 |
[14] |
Peter Giesl. Converse theorem on a global contraction metric for a periodic orbit. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5339-5363. doi: 10.3934/dcds.2019218 |
[15] |
Isaac A. García, Jaume Giné. Non-algebraic invariant curves for polynomial planar vector fields. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 755-768. doi: 10.3934/dcds.2004.10.755 |
[16] |
Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006 |
[17] |
Robert Roussarie. A topological study of planar vector field singularities. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5217-5245. doi: 10.3934/dcds.2020226 |
[18] |
Xiao-Ping Wang, Xianmin Xu. A dynamic theory for contact angle hysteresis on chemically rough boundary. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 1061-1073. doi: 10.3934/dcds.2017044 |
[19] |
Kaizhi Wang, Lin Wang, Jun Yan. Aubry-Mather theory for contact Hamiltonian systems II. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 555-595. doi: 10.3934/dcds.2021128 |
[20] |
Jaime Gutierrez. Reconstructing points of superelliptic curves over a prime finite field. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022022 |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]