-
Previous Article
Counting closed geodesics in moduli space
- JMD Home
- This Issue
-
Next Article
Perfect retroreflectors and billiard dynamics
Boundary unitary representations-irreducibility and rigidity
1. | Mathematics Department, The Technion - Israel Institute of Technology Haifa, 32000, Israel |
2. | Department of Mathematics and Computer Science, Lehman College, CUNY, 2500 Johnson Avenue Bronx, NY 10463, United States |
References:
[1] |
M. E. B. Bekka and M. Cowling, Some irreducible unitary representations of $G(K)$ for a simple algebraic group $G$ over an algebraic number field $K$,, Math. Z., 241 (2002), 731.
doi: 10.1007/s00209-002-0442-6. |
[2] |
Marc Bourdon, Structure conforme au bord et flot géodésique d'un CAT(-1)-espace,, Enseign. Math., 2 (1995), 63.
|
[3] |
Marc Burger and Pierre de la Harpe, Constructing irreducible representations of discrete groups,, Proc. Indian Acad. Sci. Math. Sci., 107 (1997), 223.
doi: 10.1007/BF02867253. |
[4] |
M. Burger and S. Mozes, CAT(-1)-spaces, divergence groups and their commensurators,, J. Amer. Math. Soc., 9 (1996), 57.
doi: 10.1090/S0894-0347-96-00196-8. |
[5] |
Chris Connell and Roman Muchnik, Harmonicity of quasiconformal measures and poisson boundaries of hyperbolic spaces,, to appear in GAFA., ().
|
[6] |
M. Cowling and T. Steger, The irreducibility of restrictions of unitary representations to lattices,, J. Reine Angew. Math., 420 (1991), 85.
|
[7] |
Alessandro Figà-Talamanca and Massimo A. Picardello, "Harmonic Analysis on Free Groups,", Lecture Notes in Pure and Applied Mathematics, 87 (1983).
|
[8] |
Alessandro Figà-Talamanca and Tim Steger, Harmonic analysis for anisotropic random walks on homogeneous trees,, Mem. Amer. Math. Soc., 110 (1994).
|
[9] |
Alex Furman, Rigidity of group actions on infinite volume homogeneous spaces, II,, preprint., (). Google Scholar |
[10] |
George W. Mackey, "The Theory of Unitary Group Representations,", University of Chicago Press, (1976).
|
[11] |
Grigoriy A. Margulis, "On Some Aspects of the Theory of Anosov Systems,", Springer Monographs in Mathematics, (2004).
|
[12] |
Chengbo Yue, The ergodic theory of discrete isometry groups on manifolds of variable negative curvature,, Trans. Amer. Math. Soc., 348 (1996), 4965.
doi: 10.1090/S0002-9947-96-01614-5. |
show all references
References:
[1] |
M. E. B. Bekka and M. Cowling, Some irreducible unitary representations of $G(K)$ for a simple algebraic group $G$ over an algebraic number field $K$,, Math. Z., 241 (2002), 731.
doi: 10.1007/s00209-002-0442-6. |
[2] |
Marc Bourdon, Structure conforme au bord et flot géodésique d'un CAT(-1)-espace,, Enseign. Math., 2 (1995), 63.
|
[3] |
Marc Burger and Pierre de la Harpe, Constructing irreducible representations of discrete groups,, Proc. Indian Acad. Sci. Math. Sci., 107 (1997), 223.
doi: 10.1007/BF02867253. |
[4] |
M. Burger and S. Mozes, CAT(-1)-spaces, divergence groups and their commensurators,, J. Amer. Math. Soc., 9 (1996), 57.
doi: 10.1090/S0894-0347-96-00196-8. |
[5] |
Chris Connell and Roman Muchnik, Harmonicity of quasiconformal measures and poisson boundaries of hyperbolic spaces,, to appear in GAFA., ().
|
[6] |
M. Cowling and T. Steger, The irreducibility of restrictions of unitary representations to lattices,, J. Reine Angew. Math., 420 (1991), 85.
|
[7] |
Alessandro Figà-Talamanca and Massimo A. Picardello, "Harmonic Analysis on Free Groups,", Lecture Notes in Pure and Applied Mathematics, 87 (1983).
|
[8] |
Alessandro Figà-Talamanca and Tim Steger, Harmonic analysis for anisotropic random walks on homogeneous trees,, Mem. Amer. Math. Soc., 110 (1994).
|
[9] |
Alex Furman, Rigidity of group actions on infinite volume homogeneous spaces, II,, preprint., (). Google Scholar |
[10] |
George W. Mackey, "The Theory of Unitary Group Representations,", University of Chicago Press, (1976).
|
[11] |
Grigoriy A. Margulis, "On Some Aspects of the Theory of Anosov Systems,", Springer Monographs in Mathematics, (2004).
|
[12] |
Chengbo Yue, The ergodic theory of discrete isometry groups on manifolds of variable negative curvature,, Trans. Amer. Math. Soc., 348 (1996), 4965.
doi: 10.1090/S0002-9947-96-01614-5. |
[1] |
Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020367 |
[2] |
Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385 |
[3] |
Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021005 |
[4] |
Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263 |
[5] |
Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125 |
[6] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[7] |
Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365 |
[8] |
Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389 |
[9] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[10] |
Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269 |
[11] |
Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020179 |
[12] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
[13] |
Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051 |
[14] |
Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048 |
[15] |
Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315 |
[16] |
Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067 |
[17] |
Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020123 |
[18] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[19] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[20] |
Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381 |
2019 Impact Factor: 0.465
Tools
Metrics
Other articles
by authors
[Back to Top]