January  2011, 5(1): 49-69. doi: 10.3934/jmd.2011.5.49

Boundary unitary representations-irreducibility and rigidity

1. 

Mathematics Department, The Technion - Israel Institute of Technology Haifa, 32000, Israel

2. 

Department of Mathematics and Computer Science, Lehman College, CUNY, 2500 Johnson Avenue Bronx, NY 10463, United States

Received  January 2010 Revised  December 2010 Published  April 2011

Let $M$ be compact negatively curved manifold, $\Gamma =\pi_1(M)$ and $M$ be its universal cover. Denote by $B =\partial M$ the geodesic boundary of $M$ and by $\nu$ the Patterson-Sullivan measure on $X$. In this note we prove that the associated unitary representation of $\Gamma$ on $L^2(B,\nu)$ is irreducible. We also establish a new rigidity phenomenon: we show that some of the geometry of $M$, namely its marked length spectrum, is reflected in this $L^2$-representations.
Citation: Uri Bader, Roman Muchnik. Boundary unitary representations-irreducibility and rigidity. Journal of Modern Dynamics, 2011, 5 (1) : 49-69. doi: 10.3934/jmd.2011.5.49
References:
[1]

M. E. B. Bekka and M. Cowling, Some irreducible unitary representations of $G(K)$ for a simple algebraic group $G$ over an algebraic number field $K$,, Math. Z., 241 (2002), 731.  doi: 10.1007/s00209-002-0442-6.  Google Scholar

[2]

Marc Bourdon, Structure conforme au bord et flot géodésique d'un CAT(-1)-espace,, Enseign. Math., 2 (1995), 63.   Google Scholar

[3]

Marc Burger and Pierre de la Harpe, Constructing irreducible representations of discrete groups,, Proc. Indian Acad. Sci. Math. Sci., 107 (1997), 223.  doi: 10.1007/BF02867253.  Google Scholar

[4]

M. Burger and S. Mozes, CAT(-1)-spaces, divergence groups and their commensurators,, J. Amer. Math. Soc., 9 (1996), 57.  doi: 10.1090/S0894-0347-96-00196-8.  Google Scholar

[5]

Chris Connell and Roman Muchnik, Harmonicity of quasiconformal measures and poisson boundaries of hyperbolic spaces,, to appear in GAFA., ().   Google Scholar

[6]

M. Cowling and T. Steger, The irreducibility of restrictions of unitary representations to lattices,, J. Reine Angew. Math., 420 (1991), 85.   Google Scholar

[7]

Alessandro Figà-Talamanca and Massimo A. Picardello, "Harmonic Analysis on Free Groups,", Lecture Notes in Pure and Applied Mathematics, 87 (1983).   Google Scholar

[8]

Alessandro Figà-Talamanca and Tim Steger, Harmonic analysis for anisotropic random walks on homogeneous trees,, Mem. Amer. Math. Soc., 110 (1994).   Google Scholar

[9]

Alex Furman, Rigidity of group actions on infinite volume homogeneous spaces, II,, preprint., ().   Google Scholar

[10]

George W. Mackey, "The Theory of Unitary Group Representations,", University of Chicago Press, (1976).   Google Scholar

[11]

Grigoriy A. Margulis, "On Some Aspects of the Theory of Anosov Systems,", Springer Monographs in Mathematics, (2004).   Google Scholar

[12]

Chengbo Yue, The ergodic theory of discrete isometry groups on manifolds of variable negative curvature,, Trans. Amer. Math. Soc., 348 (1996), 4965.  doi: 10.1090/S0002-9947-96-01614-5.  Google Scholar

show all references

References:
[1]

M. E. B. Bekka and M. Cowling, Some irreducible unitary representations of $G(K)$ for a simple algebraic group $G$ over an algebraic number field $K$,, Math. Z., 241 (2002), 731.  doi: 10.1007/s00209-002-0442-6.  Google Scholar

[2]

Marc Bourdon, Structure conforme au bord et flot géodésique d'un CAT(-1)-espace,, Enseign. Math., 2 (1995), 63.   Google Scholar

[3]

Marc Burger and Pierre de la Harpe, Constructing irreducible representations of discrete groups,, Proc. Indian Acad. Sci. Math. Sci., 107 (1997), 223.  doi: 10.1007/BF02867253.  Google Scholar

[4]

M. Burger and S. Mozes, CAT(-1)-spaces, divergence groups and their commensurators,, J. Amer. Math. Soc., 9 (1996), 57.  doi: 10.1090/S0894-0347-96-00196-8.  Google Scholar

[5]

Chris Connell and Roman Muchnik, Harmonicity of quasiconformal measures and poisson boundaries of hyperbolic spaces,, to appear in GAFA., ().   Google Scholar

[6]

M. Cowling and T. Steger, The irreducibility of restrictions of unitary representations to lattices,, J. Reine Angew. Math., 420 (1991), 85.   Google Scholar

[7]

Alessandro Figà-Talamanca and Massimo A. Picardello, "Harmonic Analysis on Free Groups,", Lecture Notes in Pure and Applied Mathematics, 87 (1983).   Google Scholar

[8]

Alessandro Figà-Talamanca and Tim Steger, Harmonic analysis for anisotropic random walks on homogeneous trees,, Mem. Amer. Math. Soc., 110 (1994).   Google Scholar

[9]

Alex Furman, Rigidity of group actions on infinite volume homogeneous spaces, II,, preprint., ().   Google Scholar

[10]

George W. Mackey, "The Theory of Unitary Group Representations,", University of Chicago Press, (1976).   Google Scholar

[11]

Grigoriy A. Margulis, "On Some Aspects of the Theory of Anosov Systems,", Springer Monographs in Mathematics, (2004).   Google Scholar

[12]

Chengbo Yue, The ergodic theory of discrete isometry groups on manifolds of variable negative curvature,, Trans. Amer. Math. Soc., 348 (1996), 4965.  doi: 10.1090/S0002-9947-96-01614-5.  Google Scholar

[1]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[2]

Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385

[3]

Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021005

[4]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[5]

Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125

[6]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[7]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[8]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[9]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[10]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[11]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[12]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[13]

Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051

[14]

Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048

[15]

Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315

[16]

Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067

[17]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[18]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[19]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[20]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]