April  2012, 6(2): 275-285. doi: 10.3934/jmd.2012.6.275

Spectral analysis of time changes of horocycle flows

1. 

Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile

Received  February 2012 Published  August 2012

We prove (under the condition of A. G. Kushnirenko) that all time changes of the horocycle flow have purely absolutely continuous spectrum in the orthocomplement of the constant functions. This provides an answer to a question of A. Katok and J.-P. Thouvenot on the spectral nature of time changes of horocycle flows. Our proofs rely on positive commutator methods for self-adjoint operators.
Citation: Rafael Tiedra De Aldecoa. Spectral analysis of time changes of horocycle flows. Journal of Modern Dynamics, 2012, 6 (2) : 275-285. doi: 10.3934/jmd.2012.6.275
References:
[1]

R. Abraham and J. E. Marsden, "Foundations of Mechanics," Second edition, revised and enlarged, With the assistance of TudorRaţiu and Richard Cushman, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978.

[2]

W. O. Amrein, Hilbert space methods in quantum mechanics. Fundamental Sciences, EPFL Press, Lausanne, distributed by CRC Press, Boca Raton, FL, 2009.

[3]

W. O. Amrein, A. Boutet de Monveland and V. Georgescu, "$ C_0 $-Groups, Commutator Methods and Spectral Theory of $N$-Body Hamiltonians," Progress in Math., 135, Birkhäuser Verlag, Basel, 1996.

[4]

A. Avila, G. Forni and C. Ulcigrai, Mixing for time-changes of heisenberg nilflows, J. Differential Geom., 89 (2011), 369-410.

[5]

H. Baumgärtel and M. Wollenberg, Mathematical scattering theory, Mathematische Lehrbücher und Monographien, II. Abteilung: Mathematische Monographien [Mathematical Textbooks and Monographs, Part II: Mathematical Monographs], 59, Akademie-Verlag, Berlin, 1983.

[6]

M. B. Bekka and M. Mayer, Ergodic theory and topological dynamics of group actions on homogeneous spaces, London Mathematical Society Lecture Note Series, 269, Cambridge University Press, Cambridge, 2000.

[7]

A. Boutet de Monvel and V. Georgescu, The method of differential inequalities, in "Recent Developments in Quantum Mechanics" (Poiana Braşov, 1989), Math. Phys. Stud., 12, Kluwer Acad. Publ., Dordrecht, (1991), 279-298.

[8]

I. P. Cornfeld, S. V. Fomin and Y. G. Sinaĭ, "Ergodic Theory," Translated from the Russian by A. B. Sosinskiĭ, Grundlehren derMathematischen Wissenschaften [Fundamental Principles of MathematicalSciences], 245, Springer-Verlag, New York, 1982.

[9]

B. Fayad, Partially mixing and locally rank 1 smooth transformations and flows on the torus Td,$d $≥$ 3$, J. London Math. Soc. (2), 64 (2001), 637-654.

[10]

B. Fayad, Smooth mixing flows with purely singular spectra, Duke Math. J., 132 (2006), 371-391. doi: 10.1215/S0012-7094-06-13225-8.

[11]

B. Fayad, A. Katok and A. Windsor, Mixed spectrum reparameterizations of linear flows on $\mathbb T^2$, Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary, Mosc. Math. J., 1 (2001), 521-537, 644.

[12]

C. Fernández, S. Richard and R. Tiedra de Aldecoa, Commutator methods for unitary operators,, J. Spectr. Theory, (). 

[13]

G. Forni and C. Ulcigrai, Time-changes of horocycle flows,, preprint, (). 

[14]

K. Gelfert and A. E. Motter, (Non)invariance of dynamical quantities for orbit equivalent flows, Comm. Math. Phys., 300 (2010), 411-433. doi: 10.1007/s00220-010-1120-x.

[15]

G. A. Hedlund, Fuchsian groups and mixtures, Ann. of Math. (2), 40 (1939), 370-383.

[16]

P. D. Humphries, Change of velocity in dynamical systems, J. London Math. Soc. (2), 7 (1974), 747-757. doi: 10.1112/jlms/s2-7.4.747.

[17]

A. Katok and J.-P. Thouvenot, Spectral properties and combinatorial constructions in ergodic theory, in "Handbook of Dynamical Systems," Vol. 1B, Elsevier B. V., Amsterdam, (2006), 649-743. doi: 10.1016/S1874-575X(06)80036-6.

[18]

A. G. Kushnirenko, Spectral properties of certain dynamical systems with polynomial dispersal, Moscow Univ. Math. Bull., 29 (1974), 82-87.

[19]

B. Marcus, The horocycle flow is mixing of all degrees, Invent. Math., 46 (1978), 201-209. doi: 10.1007/BF01390274.

[20]

É. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators,, Comm. Math. Phys., 78 (): 391.  doi: 10.1007/BF01942331.

[21]

O. S. Parasyuk, Flows of horocycles on surfaces of constant negative curvature, Uspehi Matem. Nauk (N.S.), 8 (1953), 125-126.

[22]

W. Parry, "Topics in Ergodic Theory," Cambridge Tracts in Mathematics, 75, Cambridge University Press, Cambridge-New York, 1981.

[23]

J. Sahbani, The conjugate operator method for locally regular Hamiltonians, J. Operator Theory, 38 (1997), 297-322.

[24]

H. Totoki, Time changes of flows, Mem. Fac. Sci. Kyushu Univ. Ser. A, 20 (1966), 27-55. doi: 10.2206/kyushumfs.20.27.

show all references

References:
[1]

R. Abraham and J. E. Marsden, "Foundations of Mechanics," Second edition, revised and enlarged, With the assistance of TudorRaţiu and Richard Cushman, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978.

[2]

W. O. Amrein, Hilbert space methods in quantum mechanics. Fundamental Sciences, EPFL Press, Lausanne, distributed by CRC Press, Boca Raton, FL, 2009.

[3]

W. O. Amrein, A. Boutet de Monveland and V. Georgescu, "$ C_0 $-Groups, Commutator Methods and Spectral Theory of $N$-Body Hamiltonians," Progress in Math., 135, Birkhäuser Verlag, Basel, 1996.

[4]

A. Avila, G. Forni and C. Ulcigrai, Mixing for time-changes of heisenberg nilflows, J. Differential Geom., 89 (2011), 369-410.

[5]

H. Baumgärtel and M. Wollenberg, Mathematical scattering theory, Mathematische Lehrbücher und Monographien, II. Abteilung: Mathematische Monographien [Mathematical Textbooks and Monographs, Part II: Mathematical Monographs], 59, Akademie-Verlag, Berlin, 1983.

[6]

M. B. Bekka and M. Mayer, Ergodic theory and topological dynamics of group actions on homogeneous spaces, London Mathematical Society Lecture Note Series, 269, Cambridge University Press, Cambridge, 2000.

[7]

A. Boutet de Monvel and V. Georgescu, The method of differential inequalities, in "Recent Developments in Quantum Mechanics" (Poiana Braşov, 1989), Math. Phys. Stud., 12, Kluwer Acad. Publ., Dordrecht, (1991), 279-298.

[8]

I. P. Cornfeld, S. V. Fomin and Y. G. Sinaĭ, "Ergodic Theory," Translated from the Russian by A. B. Sosinskiĭ, Grundlehren derMathematischen Wissenschaften [Fundamental Principles of MathematicalSciences], 245, Springer-Verlag, New York, 1982.

[9]

B. Fayad, Partially mixing and locally rank 1 smooth transformations and flows on the torus Td,$d $≥$ 3$, J. London Math. Soc. (2), 64 (2001), 637-654.

[10]

B. Fayad, Smooth mixing flows with purely singular spectra, Duke Math. J., 132 (2006), 371-391. doi: 10.1215/S0012-7094-06-13225-8.

[11]

B. Fayad, A. Katok and A. Windsor, Mixed spectrum reparameterizations of linear flows on $\mathbb T^2$, Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary, Mosc. Math. J., 1 (2001), 521-537, 644.

[12]

C. Fernández, S. Richard and R. Tiedra de Aldecoa, Commutator methods for unitary operators,, J. Spectr. Theory, (). 

[13]

G. Forni and C. Ulcigrai, Time-changes of horocycle flows,, preprint, (). 

[14]

K. Gelfert and A. E. Motter, (Non)invariance of dynamical quantities for orbit equivalent flows, Comm. Math. Phys., 300 (2010), 411-433. doi: 10.1007/s00220-010-1120-x.

[15]

G. A. Hedlund, Fuchsian groups and mixtures, Ann. of Math. (2), 40 (1939), 370-383.

[16]

P. D. Humphries, Change of velocity in dynamical systems, J. London Math. Soc. (2), 7 (1974), 747-757. doi: 10.1112/jlms/s2-7.4.747.

[17]

A. Katok and J.-P. Thouvenot, Spectral properties and combinatorial constructions in ergodic theory, in "Handbook of Dynamical Systems," Vol. 1B, Elsevier B. V., Amsterdam, (2006), 649-743. doi: 10.1016/S1874-575X(06)80036-6.

[18]

A. G. Kushnirenko, Spectral properties of certain dynamical systems with polynomial dispersal, Moscow Univ. Math. Bull., 29 (1974), 82-87.

[19]

B. Marcus, The horocycle flow is mixing of all degrees, Invent. Math., 46 (1978), 201-209. doi: 10.1007/BF01390274.

[20]

É. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators,, Comm. Math. Phys., 78 (): 391.  doi: 10.1007/BF01942331.

[21]

O. S. Parasyuk, Flows of horocycles on surfaces of constant negative curvature, Uspehi Matem. Nauk (N.S.), 8 (1953), 125-126.

[22]

W. Parry, "Topics in Ergodic Theory," Cambridge Tracts in Mathematics, 75, Cambridge University Press, Cambridge-New York, 1981.

[23]

J. Sahbani, The conjugate operator method for locally regular Hamiltonians, J. Operator Theory, 38 (1997), 297-322.

[24]

H. Totoki, Time changes of flows, Mem. Fac. Sci. Kyushu Univ. Ser. A, 20 (1966), 27-55. doi: 10.2206/kyushumfs.20.27.

[1]

Giovanni Forni, Corinna Ulcigrai. Time-changes of horocycle flows. Journal of Modern Dynamics, 2012, 6 (2) : 251-273. doi: 10.3934/jmd.2012.6.251

[2]

Francois Ledrappier and Omri Sarig. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic Research Announcements, 2005, 11: 89-94.

[3]

Fernando Alcalde Cuesta, Françoise Dal'Bo, Matilde Martínez, Alberto Verjovsky. Minimality of the horocycle flow on laminations by hyperbolic surfaces with non-trivial topology. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4619-4635. doi: 10.3934/dcds.2016001

[4]

Hong Lu, Ji Li, Mingji Zhang. Spectral methods for two-dimensional space and time fractional Bloch-Torrey equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3357-3371. doi: 10.3934/dcdsb.2020065

[5]

Zhen-Zhen Tao, Bing Sun. Space-time spectral methods for a fourth-order parabolic optimal control problem in three control constraint cases. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022080

[6]

Livio Flaminio, Giovanni Forni. Orthogonal powers and Möbius conjecture for smooth time changes of horocycle flows. Electronic Research Announcements, 2019, 26: 16-23. doi: 10.3934/era.2019.26.002

[7]

Adam Kanigowski, Davide Ravotti. Polynomial 3-mixing for smooth time-changes of horocycle flows. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5347-5371. doi: 10.3934/dcds.2020230

[8]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[9]

Fernando Alcalde Cuesta, Françoise Dal'Bo, Matilde Martínez, Alberto Verjovsky. Corrigendum to "Minimality of the horocycle flow on laminations by hyperbolic surfaces with non-trivial topology". Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4585-4586. doi: 10.3934/dcds.2017196

[10]

Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021, 8 (2) : 165-181. doi: 10.3934/jcd.2021008

[11]

Yuhong Dai, Ya-xiang Yuan. Analysis of monotone gradient methods. Journal of Industrial and Management Optimization, 2005, 1 (2) : 181-192. doi: 10.3934/jimo.2005.1.181

[12]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[13]

Jiangshan Wang, Lingxiong Meng, Hongen Jia. Numerical analysis of modular grad-div stability methods for the time-dependent Navier-Stokes/Darcy model. Electronic Research Archive, 2020, 28 (3) : 1191-1205. doi: 10.3934/era.2020065

[14]

Reimund Rautmann. Lower and upper bounds to the change of vorticity by transition from slip- to no-slip fluid flow. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 1101-1109. doi: 10.3934/dcdss.2014.7.1101

[15]

Pikkala Vijaya Laxmi, Seleshi Demie. Performance analysis of renewal input $(a,c,b)$ policy queue with multiple working vacations and change over times. Journal of Industrial and Management Optimization, 2014, 10 (3) : 839-857. doi: 10.3934/jimo.2014.10.839

[16]

Andrei V. Dmitruk, Nikolai P. Osmolovskii. Proof of the maximum principle for a problem with state constraints by the v-change of time variable. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2189-2204. doi: 10.3934/dcdsb.2019090

[17]

Roman Shvydkoy, Eitan Tadmor. Eulerian dynamics with a commutator forcing Ⅱ: Flocking. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5503-5520. doi: 10.3934/dcds.2017239

[18]

Thomas Schuster, Joachim Weickert. On the application of projection methods for computing optical flow fields. Inverse Problems and Imaging, 2007, 1 (4) : 673-690. doi: 10.3934/ipi.2007.1.673

[19]

Torsten Trimborn, Stephan Gerster, Giuseppe Visconti. Spectral methods to study the robustness of residual neural networks with infinite layers. Foundations of Data Science, 2020, 2 (3) : 257-278. doi: 10.3934/fods.2020012

[20]

Sarah Constantin, Robert S. Strichartz, Miles Wheeler. Analysis of the Laplacian and spectral operators on the Vicsek set. Communications on Pure and Applied Analysis, 2011, 10 (1) : 1-44. doi: 10.3934/cpaa.2011.10.1

2020 Impact Factor: 0.848

Metrics

  • PDF downloads (97)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]