July  2012, 6(3): 327-375. doi: 10.3934/jmd.2012.6.327

The Julia set of a post-critically finite endomorphism of $\mathbb{PC}^2$

1. 

Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, United States

Received  April 2011 Published  October 2012

We construct a combinatorial model of the Julia set of the endomorphism $f(z, w)=((1-2z/w)^2, (1-2/w)^2)$ of $\mathbb{PC}^2$.
Citation: Volodymyr Nekrashevych. The Julia set of a post-critically finite endomorphism of $\mathbb{PC}^2$. Journal of Modern Dynamics, 2012, 6 (3) : 327-375. doi: 10.3934/jmd.2012.6.327
References:
[1]

Laurent Bartholdi and Volodymyr V. Nekrashevych, Thurston equivalence of topological polynomials, Acta Math., 197 (2006), 1-51. doi: 10.1007/s11511-006-0007-3.  Google Scholar

[2]

Joan S. Birman, "Braids, Links, and Mapping Class Groups," Annals of Mathematics Studies, 82, Princeton University Press, Princeton, N.J., 1974.  Google Scholar

[3]

Adrien Douady and John H. Hubbard, "Étude Dynamiques des Polynômes Complexes. (Première Partie)," Publications Mathematiques d'Orsay, 2, Université de Paris-Sud, 1984. Google Scholar

[4]

Adrien Douady and John H. Hubbard, "Étude Dynamiques des Polynômes Complexes. (Deuxième Partie)," Publications Mathematiques d'Orsay, 4, Université de Paris-Sud, 1985. Google Scholar

[5]

Adrien Douady and John H. Hubbard, A proof of Thurston's topological characterization of rational functions, Acta Math., 171 (1993), 263-297. doi: 10.1007/BF02392534.  Google Scholar

[6]

J. E. Fornæss and N. Sibony, Critically finite rational maps on $\mathbbP^2$, in "The Madison Symposium on Complex Analysis" (Madison, WI, 1991), Contemp. Math., 137, Amer. Math. Soc., Providence, RI, (1992), 245-260.  Google Scholar

[7]

Yutaka Ishii and John Smillie, Homotopy shadowing, Amer. J. Math., 132 (2010), 987-1029. doi: 10.1353/ajm.0.0126.  Google Scholar

[8]

S. Koch, "Teichmüller Theory and Endomorphisms of $\mathbbP^n$," Ph.D. thesis, Université de Provence, 2007. Google Scholar

[9]

John Milnor, Pasting together Julia sets: A worked out example of mating, Experiment. Math., 13 (2004), 55-92. doi: 10586458.2004.10504523.  Google Scholar

[10]

Volodymyr Nekrashevych, "Self-Similar Groups," Mathematical Surveys and Monographs, 117, Amer. Math. Soc., Providence, RI, 2005.  Google Scholar

[11]

Volodymyr Nekrashevych, A minimal Cantor set in the space of 3-generated groups, Geometriae Dedicata, 124 (2007), 153-190. doi: 10.1007/s10711-006-9118-4.  Google Scholar

[12]

Volodymyr Nekrashevych, Combinatorial models of expanding dynamical systems, preprint, arXiv:0810.4936, 2008. Google Scholar

[13]

Volodymyr Nekrashevych, Symbolic dynamics and self-similar groups, in "Holomorphic Dynamics and Renormalization" (eds. Mikhail Lyubich and Michael Yampolsky), Fields Institute Communications, 53, Amer. Math. Soc., Providence, RI, (2008), 25-73.  Google Scholar

[14]

Volodymyr Nekrashevych., Combinatorics of polynomial iterations. In D. Schleicher, editor, Complex Dynamics - Families and Friends, pages 169-214. A K Peters, 2009.  Google Scholar

[15]

Volodymyr Nekrashevych, A group of non-uniform exponential growth locally isomorphic to $IMG$$(z^2+i)$, Transactions of the AMS, 362 (2010), 389-398.  Google Scholar

[16]

Alfredo Poirier, The classification of postcritically finite polynomials II: Hubbard trees, Stony Brook IMS preprint, 1993. Google Scholar

[17]

John S. Wilson, On exponential growth and uniform exponential growth for groups, Inventiones Mathematicae, 155 (2004), 287-303. doi: 10.1007/s00222-003-0321-8.  Google Scholar

show all references

References:
[1]

Laurent Bartholdi and Volodymyr V. Nekrashevych, Thurston equivalence of topological polynomials, Acta Math., 197 (2006), 1-51. doi: 10.1007/s11511-006-0007-3.  Google Scholar

[2]

Joan S. Birman, "Braids, Links, and Mapping Class Groups," Annals of Mathematics Studies, 82, Princeton University Press, Princeton, N.J., 1974.  Google Scholar

[3]

Adrien Douady and John H. Hubbard, "Étude Dynamiques des Polynômes Complexes. (Première Partie)," Publications Mathematiques d'Orsay, 2, Université de Paris-Sud, 1984. Google Scholar

[4]

Adrien Douady and John H. Hubbard, "Étude Dynamiques des Polynômes Complexes. (Deuxième Partie)," Publications Mathematiques d'Orsay, 4, Université de Paris-Sud, 1985. Google Scholar

[5]

Adrien Douady and John H. Hubbard, A proof of Thurston's topological characterization of rational functions, Acta Math., 171 (1993), 263-297. doi: 10.1007/BF02392534.  Google Scholar

[6]

J. E. Fornæss and N. Sibony, Critically finite rational maps on $\mathbbP^2$, in "The Madison Symposium on Complex Analysis" (Madison, WI, 1991), Contemp. Math., 137, Amer. Math. Soc., Providence, RI, (1992), 245-260.  Google Scholar

[7]

Yutaka Ishii and John Smillie, Homotopy shadowing, Amer. J. Math., 132 (2010), 987-1029. doi: 10.1353/ajm.0.0126.  Google Scholar

[8]

S. Koch, "Teichmüller Theory and Endomorphisms of $\mathbbP^n$," Ph.D. thesis, Université de Provence, 2007. Google Scholar

[9]

John Milnor, Pasting together Julia sets: A worked out example of mating, Experiment. Math., 13 (2004), 55-92. doi: 10586458.2004.10504523.  Google Scholar

[10]

Volodymyr Nekrashevych, "Self-Similar Groups," Mathematical Surveys and Monographs, 117, Amer. Math. Soc., Providence, RI, 2005.  Google Scholar

[11]

Volodymyr Nekrashevych, A minimal Cantor set in the space of 3-generated groups, Geometriae Dedicata, 124 (2007), 153-190. doi: 10.1007/s10711-006-9118-4.  Google Scholar

[12]

Volodymyr Nekrashevych, Combinatorial models of expanding dynamical systems, preprint, arXiv:0810.4936, 2008. Google Scholar

[13]

Volodymyr Nekrashevych, Symbolic dynamics and self-similar groups, in "Holomorphic Dynamics and Renormalization" (eds. Mikhail Lyubich and Michael Yampolsky), Fields Institute Communications, 53, Amer. Math. Soc., Providence, RI, (2008), 25-73.  Google Scholar

[14]

Volodymyr Nekrashevych., Combinatorics of polynomial iterations. In D. Schleicher, editor, Complex Dynamics - Families and Friends, pages 169-214. A K Peters, 2009.  Google Scholar

[15]

Volodymyr Nekrashevych, A group of non-uniform exponential growth locally isomorphic to $IMG$$(z^2+i)$, Transactions of the AMS, 362 (2010), 389-398.  Google Scholar

[16]

Alfredo Poirier, The classification of postcritically finite polynomials II: Hubbard trees, Stony Brook IMS preprint, 1993. Google Scholar

[17]

John S. Wilson, On exponential growth and uniform exponential growth for groups, Inventiones Mathematicae, 155 (2004), 287-303. doi: 10.1007/s00222-003-0321-8.  Google Scholar

[1]

André Caldas, Mauro Patrão. Entropy of endomorphisms of Lie groups. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 1351-1363. doi: 10.3934/dcds.2013.33.1351

[2]

Jason Atnip, Mariusz Urbański. Critically finite random maps of an interval. Discrete & Continuous Dynamical Systems, 2020, 40 (8) : 4839-4906. doi: 10.3934/dcds.2020204

[3]

Rodolfo Gutiérrez-Romo. A family of quaternionic monodromy groups of the Kontsevich–Zorich cocycle. Journal of Modern Dynamics, 2019, 14: 227-242. doi: 10.3934/jmd.2019008

[4]

François Berteloot, Tien-Cuong Dinh. The Mandelbrot set is the shadow of a Julia set. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6611-6633. doi: 10.3934/dcds.2020262

[5]

Luke G. Rogers, Alexander Teplyaev. Laplacians on the basilica Julia set. Communications on Pure & Applied Analysis, 2010, 9 (1) : 211-231. doi: 10.3934/cpaa.2010.9.211

[6]

Anna Erschler. Iterated identities and iterational depth of groups. Journal of Modern Dynamics, 2015, 9: 257-284. doi: 10.3934/jmd.2015.9.257

[7]

Thierry Coulbois. Fractal trees for irreducible automorphisms of free groups. Journal of Modern Dynamics, 2010, 4 (2) : 359-391. doi: 10.3934/jmd.2010.4.359

[8]

Artem Dudko. Computability of the Julia set. Nonrecurrent critical orbits. Discrete & Continuous Dynamical Systems, 2014, 34 (7) : 2751-2778. doi: 10.3934/dcds.2014.34.2751

[9]

Tatiane C. Batista, Juliano S. Gonschorowski, Fábio A. Tal. Density of the set of endomorphisms with a maximizing measure supported on a periodic orbit. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3315-3326. doi: 10.3934/dcds.2015.35.3315

[10]

Koh Katagata. On a certain kind of polynomials of degree 4 with disconnected Julia set. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 975-987. doi: 10.3934/dcds.2008.20.975

[11]

Rich Stankewitz. Density of repelling fixed points in the Julia set of a rational or entire semigroup, II. Discrete & Continuous Dynamical Systems, 2012, 32 (7) : 2583-2589. doi: 10.3934/dcds.2012.32.2583

[12]

Eldho K. Thomas, Nadya Markin, Frédérique Oggier. On Abelian group representability of finite groups. Advances in Mathematics of Communications, 2014, 8 (2) : 139-152. doi: 10.3934/amc.2014.8.139

[13]

Jinghong Liu, Yinsuo Jia. Gradient superconvergence post-processing of the tensor-product quadratic pentahedral finite element. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 495-504. doi: 10.3934/dcdsb.2015.20.495

[14]

Henk Broer, Konstantinos Efstathiou, Olga Lukina. A geometric fractional monodromy theorem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 517-532. doi: 10.3934/dcdss.2010.3.517

[15]

Yu-Hao Liang, Wan-Rou Wu, Jonq Juang. Fastest synchronized network and synchrony on the Julia set of complex-valued coupled map lattices. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 173-184. doi: 10.3934/dcdsb.2016.21.173

[16]

Naoki Chigira, Nobuo Iiyori and Hiroyoshi Yamaki. Nonabelian Sylow subgroups of finite groups of even order. Electronic Research Announcements, 1998, 4: 88-90.

[17]

L. Yu. Glebsky and E. I. Gordon. On approximation of locally compact groups by finite algebraic systems. Electronic Research Announcements, 2004, 10: 21-28.

[18]

Brandon Seward. Krieger's finite generator theorem for actions of countable groups Ⅱ. Journal of Modern Dynamics, 2019, 15: 1-39. doi: 10.3934/jmd.2019012

[19]

L. Bakker. Semiconjugacy of quasiperiodic flows and finite index subgroups of multiplier groups. Conference Publications, 2005, 2005 (Special) : 60-69. doi: 10.3934/proc.2005.2005.60

[20]

Alexander Moreto. Complex group algebras of finite groups: Brauer's Problem 1. Electronic Research Announcements, 2005, 11: 34-39.

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]