-
Previous Article
Quadratic irrationals and linking numbers of modular knots
- JMD Home
- This Issue
-
Next Article
Ergodic infinite group extensions of geodesic flows on translation surfaces
Connecting orbits for families of Tonelli Hamiltonians
1. | Université Paris-Dauphine, CEREMADE UMR CNRS 7534, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16 |
References:
[1] |
V. I. Arnol'd, Instability of dynamical systems with many degrees of freedom, Dokl. Akad. Nauk SSSR, 156 (1964), 9-12. |
[2] |
Patrick Bernard, Connecting orbits of time dependent Lagrangian systems, Ann. Inst. Fourier (Grenoble), 52 (2002), 1533-1568. |
[3] |
_____, The dynamics of pseudographs in convex Hamiltonian systems, J. Amer. Math. Soc., 21 (2008), 615-669.
doi: 10.1090/S0894-0347-08-00591-2. |
[4] |
George D. Birkhoff, Sur l'existence de régions d'instabilité en Dynamique, Ann. Inst. H. Poincaré, 2 (1932), 369-386. |
[5] |
_____, Sur quelques courbes fermées remarquables, Bull. Soc. Math. France, 60 (1932), 1-26. |
[6] |
Abed Bounemoura and Edouard Pennamen, Instability for a priori unstable Hamiltonian systems: A dynamical approach, Discrete Contin. Dyn. Syst., 32 (2012), 753-793.
doi: 10.3934/dcds.2012.32.753. |
[7] |
Piermarco Cannarsa and Carlo Sinestrari, "Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control," Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser Boston, Inc., Boston, MA, 2004. |
[8] |
Chong-Qing Cheng and Jun Yan, Existence of diffusion orbits in a priori unstable Hamiltonian systems, J. Differential Geom., 67 (2004), 457-517. |
[9] |
_____, Arnold diffusion in Hamiltonian systems: A priori unstable case, J. Differential Geom., 82 (2009), 229-277. |
[10] |
X. Cui, On commuting Tonelli Hamiltonians: Time-periodic case, preprint, arXiv:1001.1324. |
[11] |
Xiaojun Cui and Ji Li, On commuting Tonelli Hamiltonians: Autonomous case, Journal of Differential Equations, 250 (2011), 4104-4123.
doi: 10.1016/j.jde.2011.01.020. |
[12] |
Albert Fathi, Weak KAM Theorem and Lagrangian dynamics, Preliminary version number 10 - version 15, June, 2008. |
[13] |
Boris Hasselblatt and Anatole Katok, Principal structures, in "Handbook of Dynamical Systems," Vol. 1A, North-Holland, Amsterdam, (2002), 1-203.
doi: 10.1016/S1874-575X(02)80003-0. |
[14] | |
[15] |
Patrice Le Calvez, Drift orbits for families of twist maps of the annulus, Ergodic Theory Dynam. Systems, 27 (2007), 869-879.
doi: 10.1017/S0143385706000903. |
[16] |
Jean-Pierre Marco, Modèles pour les applications fibrées et les polysystèmes, C. R. Math. Acad. Sci. Paris, 346 (2008), 203-208.
doi: 10.1016/j.crma.2007.11.017. |
[17] |
John N. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., 207 (1991), 169-207.
doi: 10.1007/BF02571383. |
[18] |
_____, Variational construction of orbits of twist diffeomorphisms, J. Amer. Math. Soc., 4 (1991), 207-263.
doi: 10.2307/2939275. |
[19] |
_____, Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble), 43 (1993), 1349-1386. |
[20] |
Richard Moeckel, Generic drift on Cantor sets of annuli, in "Celestial Mechanics" (Evanston, IL, 1999), Contemp. Math., 292, Amer. Math. Soc., Providence, RI, (2002), 163-171.
doi: 10.1090/conm/292/04922. |
[21] |
Jürgen Moser, Monotone twist mappings and the calculus of variations, Ergodic Theory Dynam. Systems, 6 (1986), 401-413.
doi: 10.1017/S0143385700003588. |
[22] |
Maxime Zavidovique, Weak KAM for commuting Hamiltonians, Nonlinearity, 23 (2010), 793-808.
doi: 10.1088/0951-7715/23/4/002. |
[23] |
_____, Strict sub-solutions and Mañé potential in discrete weak KAM theory, Commentarii Mathematici Elvetici, 87 (2012), 1-39. |
show all references
References:
[1] |
V. I. Arnol'd, Instability of dynamical systems with many degrees of freedom, Dokl. Akad. Nauk SSSR, 156 (1964), 9-12. |
[2] |
Patrick Bernard, Connecting orbits of time dependent Lagrangian systems, Ann. Inst. Fourier (Grenoble), 52 (2002), 1533-1568. |
[3] |
_____, The dynamics of pseudographs in convex Hamiltonian systems, J. Amer. Math. Soc., 21 (2008), 615-669.
doi: 10.1090/S0894-0347-08-00591-2. |
[4] |
George D. Birkhoff, Sur l'existence de régions d'instabilité en Dynamique, Ann. Inst. H. Poincaré, 2 (1932), 369-386. |
[5] |
_____, Sur quelques courbes fermées remarquables, Bull. Soc. Math. France, 60 (1932), 1-26. |
[6] |
Abed Bounemoura and Edouard Pennamen, Instability for a priori unstable Hamiltonian systems: A dynamical approach, Discrete Contin. Dyn. Syst., 32 (2012), 753-793.
doi: 10.3934/dcds.2012.32.753. |
[7] |
Piermarco Cannarsa and Carlo Sinestrari, "Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control," Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser Boston, Inc., Boston, MA, 2004. |
[8] |
Chong-Qing Cheng and Jun Yan, Existence of diffusion orbits in a priori unstable Hamiltonian systems, J. Differential Geom., 67 (2004), 457-517. |
[9] |
_____, Arnold diffusion in Hamiltonian systems: A priori unstable case, J. Differential Geom., 82 (2009), 229-277. |
[10] |
X. Cui, On commuting Tonelli Hamiltonians: Time-periodic case, preprint, arXiv:1001.1324. |
[11] |
Xiaojun Cui and Ji Li, On commuting Tonelli Hamiltonians: Autonomous case, Journal of Differential Equations, 250 (2011), 4104-4123.
doi: 10.1016/j.jde.2011.01.020. |
[12] |
Albert Fathi, Weak KAM Theorem and Lagrangian dynamics, Preliminary version number 10 - version 15, June, 2008. |
[13] |
Boris Hasselblatt and Anatole Katok, Principal structures, in "Handbook of Dynamical Systems," Vol. 1A, North-Holland, Amsterdam, (2002), 1-203.
doi: 10.1016/S1874-575X(02)80003-0. |
[14] | |
[15] |
Patrice Le Calvez, Drift orbits for families of twist maps of the annulus, Ergodic Theory Dynam. Systems, 27 (2007), 869-879.
doi: 10.1017/S0143385706000903. |
[16] |
Jean-Pierre Marco, Modèles pour les applications fibrées et les polysystèmes, C. R. Math. Acad. Sci. Paris, 346 (2008), 203-208.
doi: 10.1016/j.crma.2007.11.017. |
[17] |
John N. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., 207 (1991), 169-207.
doi: 10.1007/BF02571383. |
[18] |
_____, Variational construction of orbits of twist diffeomorphisms, J. Amer. Math. Soc., 4 (1991), 207-263.
doi: 10.2307/2939275. |
[19] |
_____, Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble), 43 (1993), 1349-1386. |
[20] |
Richard Moeckel, Generic drift on Cantor sets of annuli, in "Celestial Mechanics" (Evanston, IL, 1999), Contemp. Math., 292, Amer. Math. Soc., Providence, RI, (2002), 163-171.
doi: 10.1090/conm/292/04922. |
[21] |
Jürgen Moser, Monotone twist mappings and the calculus of variations, Ergodic Theory Dynam. Systems, 6 (1986), 401-413.
doi: 10.1017/S0143385700003588. |
[22] |
Maxime Zavidovique, Weak KAM for commuting Hamiltonians, Nonlinearity, 23 (2010), 793-808.
doi: 10.1088/0951-7715/23/4/002. |
[23] |
_____, Strict sub-solutions and Mañé potential in discrete weak KAM theory, Commentarii Mathematici Elvetici, 87 (2012), 1-39. |
[1] |
Renato Iturriaga, Héctor Sánchez Morgado. The Lax-Oleinik semigroup on graphs. Networks and Heterogeneous Media, 2017, 12 (4) : 643-662. doi: 10.3934/nhm.2017026 |
[2] |
Ernest Fontich, Pau Martín. Arnold diffusion in perturbations of analytic integrable Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 61-84. doi: 10.3934/dcds.2001.7.61 |
[3] |
Andrea Davini, Maxime Zavidovique. Weak KAM theory for nonregular commuting Hamiltonians. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 57-94. doi: 10.3934/dcdsb.2013.18.57 |
[4] |
Luigi Chierchia, Gabriella Pinzari. Properly-degenerate KAM theory (following V. I. Arnold). Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 545-578. doi: 10.3934/dcdss.2010.3.545 |
[5] |
Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069 |
[6] |
Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080 |
[7] |
Maxime Zavidovique. Existence of $C^{1,1}$ critical subsolutions in discrete weak KAM theory. Journal of Modern Dynamics, 2010, 4 (4) : 693-714. doi: 10.3934/jmd.2010.4.693 |
[8] |
Jacky Cresson, Christophe Guillet. Periodic orbits and Arnold diffusion. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 451-470. doi: 10.3934/dcds.2003.9.451 |
[9] |
Welington Cordeiro, Manfred Denker, Michiko Yuri. A note on specification for iterated function systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3475-3485. doi: 10.3934/dcdsb.2015.20.3475 |
[10] |
Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114 |
[11] |
Saisai Shi, Bo Tan, Qinglong Zhou. Best approximation of orbits in iterated function systems. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4085-4104. doi: 10.3934/dcds.2021029 |
[12] |
Fei Liu, Jaume Llibre, Xiang Zhang. Heteroclinic orbits for a class of Hamiltonian systems on Riemannian manifolds. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1097-1111. doi: 10.3934/dcds.2011.29.1097 |
[13] |
Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106 |
[14] |
Jacky Cresson. The transfer lemma for Graff tori and Arnold diffusion time. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 787-800. doi: 10.3934/dcds.2001.7.787 |
[15] |
Massimiliano Berti, Philippe Bolle. Fast Arnold diffusion in systems with three time scales. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 795-811. doi: 10.3934/dcds.2002.8.795 |
[16] |
Massimiliano Berti. Some remarks on a variational approach to Arnold's diffusion. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 307-314. doi: 10.3934/dcds.1996.2.307 |
[17] |
Jacques Féjoz. On "Arnold's theorem" on the stability of the solar system. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3555-3565. doi: 10.3934/dcds.2013.33.3555 |
[18] |
Peng Chen, Linfeng Mei, Xianhua Tang. Nonstationary homoclinic orbit for an infinite-dimensional fractional reaction-diffusion system. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021279 |
[19] |
Thomas Jordan, Mark Pollicott. The Hausdorff dimension of measures for iterated function systems which contract on average. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 235-246. doi: 10.3934/dcds.2008.22.235 |
[20] |
Pablo G. Barrientos, Abbas Fakhari, Aliasghar Sarizadeh. Density of fiberwise orbits in minimal iterated function systems on the circle. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3341-3352. doi: 10.3934/dcds.2014.34.3341 |
2021 Impact Factor: 0.641
Tools
Metrics
Other articles
by authors
[Back to Top]