-
Previous Article
A dynamical approach to Maass cusp forms
- JMD Home
- This Issue
-
Next Article
Connecting orbits for families of Tonelli Hamiltonians
Quadratic irrationals and linking numbers of modular knots
1. | Boston College, Department of Mathematics, Chestnut Hill, MA 02467, United States |
References:
[1] |
E. Artin, Ein mechanisches System mit quasiergodischen Bahnen, Hamb. Math. Abh., 3 (1924), 170-177. |
[2] |
W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math., 92 (1988), 73-90.
doi: 10.1007/BF01393993. |
[3] |
I. Efrat, Dynamics of the continued fraction map and the spectral theory of $SL(2,\mathbf Z)$, Invent. Math., 114 (1993), 207-218.
doi: 10.1007/BF01232667. |
[4] |
É. Ghys, Knots and dynamics, in "International Congress of Mathematicians," Vol. I, Eur. Math. Soc., Zürich, (2007), 247-277.
doi: 10.4171/022-1/11. |
[5] |
D. A. Hejhal, "The Selberg Trace Formula for $PSL(2, \mathbf R)$," Vol. 2, Lecture Notes in Mathematics, Vol. 1001, Springer-Verlag, Berlin, 1983. |
[6] |
T. Kato, "A Short Introduction to Perturbation Theory for Linear Operators," Springer-Verlag, New York-Berlin, 1982. |
[7] |
J. Korevaar, "Tauberian Theory. A Century of Developments," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 329, Springer-Verlag, Berlin, 2004. |
[8] |
A. Katsuda and T. Sunada, Closed orbits in homology classes, Inst. Hautes Études Sci. Publ. Math., No. 71 (1990), 5-32. |
[9] |
S. P. Lalley, Closed geodesics in homology classes on surfaces of variable negative curvature, Duke Math. J., 58 (1989), 795-821.
doi: 10.1215/S0012-7094-89-05837-7. |
[10] |
D. H. Mayer, On a $\zeta$ function related to the continued fraction transformation, Bull. Soc. Math. France, 104 (1976), 195-203. |
[11] |
_____, The thermodynamic formalism approach to Selberg's zeta function for $PSL(2,\mathbf Z)$, Bull. Amer. Math. Soc. (N.S.), 25 (1991), 55-60.
doi: 10.1090/S0273-0979-1991-16023-4. |
[12] |
C. J. Mozzochi, Linking numbers of modular geodesics, preprint, (2010). |
[13] |
M. Pollicott, Distribution of closed geodesics on the modular surface and quadratic irrationals, Bull. Soc. Math. France, 114 (1986), 431-446. |
[14] |
_____, Homology and closed geodesics in a compact negatively curved surface, Amer. J. Math., 113 (1991), 379-385.
doi: 10.2307/2374830. |
[15] |
R. Phillips and P. Sarnak, Geodesics in homology classes, Duke Math. J., 55 (1987), 287-297.
doi: 10.1215/S0012-7094-87-05515-3. |
[16] |
H. Rademacher and E. Grosswald, "Dedekind Sums," The Carus Mathematical Monographs, No. 16, The Mathematical Association of America, Washington, D. C., 1972. |
[17] |
P. Sarnak, Class numbers of indefinite binary quadratic forms, J. Number Theory, 15 (1982), 229-247.
doi: 10.1016/0022-314X(82)90028-2. |
[18] |
_____, Reciprocal geodesics, in "Analytic Number Theory," Clay Math. Proc., 7, Amer. Math. Soc., Providence, RI, (2007), 217-237. |
[19] |
_____, Linking numbers of modular knots, Commun. Math. Anal., 8 (2010), 136-144. |
[20] |
C. Series, The modular surface and continued fractions, J. London Math. Soc. (2), 31 (1985), 69-80.
doi: 10.1112/jlms/s2-31.1.69. |
[21] |
S. Zelditch, Trace formula for compact $\Gamma\backslash PSL_2(\mathbf R)$ and the equidistribution theory of closed geodesics, Duke Math. J., 59 (1989), 27-81.
doi: 10.1215/S0012-7094-89-05902-4. |
show all references
References:
[1] |
E. Artin, Ein mechanisches System mit quasiergodischen Bahnen, Hamb. Math. Abh., 3 (1924), 170-177. |
[2] |
W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math., 92 (1988), 73-90.
doi: 10.1007/BF01393993. |
[3] |
I. Efrat, Dynamics of the continued fraction map and the spectral theory of $SL(2,\mathbf Z)$, Invent. Math., 114 (1993), 207-218.
doi: 10.1007/BF01232667. |
[4] |
É. Ghys, Knots and dynamics, in "International Congress of Mathematicians," Vol. I, Eur. Math. Soc., Zürich, (2007), 247-277.
doi: 10.4171/022-1/11. |
[5] |
D. A. Hejhal, "The Selberg Trace Formula for $PSL(2, \mathbf R)$," Vol. 2, Lecture Notes in Mathematics, Vol. 1001, Springer-Verlag, Berlin, 1983. |
[6] |
T. Kato, "A Short Introduction to Perturbation Theory for Linear Operators," Springer-Verlag, New York-Berlin, 1982. |
[7] |
J. Korevaar, "Tauberian Theory. A Century of Developments," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 329, Springer-Verlag, Berlin, 2004. |
[8] |
A. Katsuda and T. Sunada, Closed orbits in homology classes, Inst. Hautes Études Sci. Publ. Math., No. 71 (1990), 5-32. |
[9] |
S. P. Lalley, Closed geodesics in homology classes on surfaces of variable negative curvature, Duke Math. J., 58 (1989), 795-821.
doi: 10.1215/S0012-7094-89-05837-7. |
[10] |
D. H. Mayer, On a $\zeta$ function related to the continued fraction transformation, Bull. Soc. Math. France, 104 (1976), 195-203. |
[11] |
_____, The thermodynamic formalism approach to Selberg's zeta function for $PSL(2,\mathbf Z)$, Bull. Amer. Math. Soc. (N.S.), 25 (1991), 55-60.
doi: 10.1090/S0273-0979-1991-16023-4. |
[12] |
C. J. Mozzochi, Linking numbers of modular geodesics, preprint, (2010). |
[13] |
M. Pollicott, Distribution of closed geodesics on the modular surface and quadratic irrationals, Bull. Soc. Math. France, 114 (1986), 431-446. |
[14] |
_____, Homology and closed geodesics in a compact negatively curved surface, Amer. J. Math., 113 (1991), 379-385.
doi: 10.2307/2374830. |
[15] |
R. Phillips and P. Sarnak, Geodesics in homology classes, Duke Math. J., 55 (1987), 287-297.
doi: 10.1215/S0012-7094-87-05515-3. |
[16] |
H. Rademacher and E. Grosswald, "Dedekind Sums," The Carus Mathematical Monographs, No. 16, The Mathematical Association of America, Washington, D. C., 1972. |
[17] |
P. Sarnak, Class numbers of indefinite binary quadratic forms, J. Number Theory, 15 (1982), 229-247.
doi: 10.1016/0022-314X(82)90028-2. |
[18] |
_____, Reciprocal geodesics, in "Analytic Number Theory," Clay Math. Proc., 7, Amer. Math. Soc., Providence, RI, (2007), 217-237. |
[19] |
_____, Linking numbers of modular knots, Commun. Math. Anal., 8 (2010), 136-144. |
[20] |
C. Series, The modular surface and continued fractions, J. London Math. Soc. (2), 31 (1985), 69-80.
doi: 10.1112/jlms/s2-31.1.69. |
[21] |
S. Zelditch, Trace formula for compact $\Gamma\backslash PSL_2(\mathbf R)$ and the equidistribution theory of closed geodesics, Duke Math. J., 59 (1989), 27-81.
doi: 10.1215/S0012-7094-89-05902-4. |
[1] |
Wenzhi Luo, Zeév Rudnick, Peter Sarnak. The variance of arithmetic measures associated to closed geodesics on the modular surface. Journal of Modern Dynamics, 2009, 3 (2) : 271-309. doi: 10.3934/jmd.2009.3.271 |
[2] |
Alex Eskin, Maryam Mirzakhani. Counting closed geodesics in moduli space. Journal of Modern Dynamics, 2011, 5 (1) : 71-105. doi: 10.3934/jmd.2011.5.71 |
[3] |
Artur O. Lopes, Rafael O. Ruggiero. Large deviations and Aubry-Mather measures supported in nonhyperbolic closed geodesics. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1155-1174. doi: 10.3934/dcds.2011.29.1155 |
[4] |
Feng Luo. On non-separating simple closed curves in a compact surface. Electronic Research Announcements, 1995, 1: 18-25. |
[5] |
Miroslav KolÁŘ, Michal BeneŠ, Daniel ŠevČoviČ. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3671-3689. doi: 10.3934/dcdsb.2017148 |
[6] |
Bennett Palmer. Stable closed equilibria for anisotropic surface energies: Surfaces with edges. Journal of Geometric Mechanics, 2012, 4 (1) : 89-97. doi: 10.3934/jgm.2012.4.89 |
[7] |
Hui Liu, Yiming Long, Yuming Xiao. The existence of two non-contractible closed geodesics on every bumpy Finsler compact space form. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3803-3829. doi: 10.3934/dcds.2018165 |
[8] |
Francisco Arana-Herrera. Counting square-tiled surfaces with prescribed real and imaginary foliations and connections to Mirzakhani's asymptotics for simple closed hyperbolic geodesics. Journal of Modern Dynamics, 2020, 16: 81-107. doi: 10.3934/jmd.2020004 |
[9] |
David Bechara Senior, Umberto L. Hryniewicz, Pedro A. S. Salomão. On the relation between action and linking. Journal of Modern Dynamics, 2021, 17: 319-336. doi: 10.3934/jmd.2021011 |
[10] |
Benjamin Dozier. Equidistribution of saddle connections on translation surfaces. Journal of Modern Dynamics, 2019, 14: 87-120. doi: 10.3934/jmd.2019004 |
[11] |
Manish K. Gupta, Chinnappillai Durairajan. On the covering radius of some modular codes. Advances in Mathematics of Communications, 2014, 8 (2) : 129-137. doi: 10.3934/amc.2014.8.129 |
[12] |
Peng Sun. Exponential decay of Lebesgue numbers. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3773-3785. doi: 10.3934/dcds.2012.32.3773 |
[13] |
Danny Calegari, Alden Walker. Ziggurats and rotation numbers. Journal of Modern Dynamics, 2011, 5 (4) : 711-746. doi: 10.3934/jmd.2011.5.711 |
[14] |
Xavier Buff, Nataliya Goncharuk. Complex rotation numbers. Journal of Modern Dynamics, 2015, 9: 169-190. doi: 10.3934/jmd.2015.9.169 |
[15] |
Wenyu Pan. Effective equidistribution of circles in the limit sets of Kleinian groups. Journal of Modern Dynamics, 2017, 11: 189-217. doi: 10.3934/jmd.2017009 |
[16] |
Runlin Zhang. Equidistribution of translates of a homogeneous measure on the Borel–Serre compactification. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 2053-2071. doi: 10.3934/dcds.2021183 |
[17] |
Margarida Camarinha, Fátima Silva Leite, Peter Crouch. Riemannian cubics close to geodesics at the boundaries. Journal of Geometric Mechanics, 2022 doi: 10.3934/jgm.2022003 |
[18] |
Robert L. Griess Jr., Ching Hung Lam. Groups of Lie type, vertex algebras, and modular moonshine. Electronic Research Announcements, 2014, 21: 167-176. doi: 10.3934/era.2014.21.167 |
[19] |
Takao Komatsu, Bijan Kumar Patel, Claudio Pita-Ruiz. Several formulas for Bernoulli numbers and polynomials. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021006 |
[20] |
Dmitry Krachun, Zhi-Wei Sun. On sums of four pentagonal numbers with coefficients. Electronic Research Archive, 2020, 28 (1) : 559-566. doi: 10.3934/era.2020029 |
2021 Impact Factor: 0.641
Tools
Metrics
Other articles
by authors
[Back to Top]