April  2013, 7(2): 269-290. doi: 10.3934/jmd.2013.7.269

Growth of quotients of groups acting by isometries on Gromov-hyperbolic spaces

1. 

Université Paris-Est, Laboratoire d’Analyse et Mathématiques Appliquées (UMR 8050), UPEC, UPEMLV, CNRS, F-94010, Créteil, France

Received  December 2012 Published  September 2013

We show that every group $G$ with no cyclic subgroup of finite index that acts properly and cocompactly by isometries on a proper geodesic Gromov-hyperbolic space $X$ is growth-tight. In other words, the exponential growth rate of $G$ for the geometric (pseudo)-distance induced by $X$ is greater than the exponential growth rate of any of its quotients by an infinite normal subgroup. This result unifies and extends previous works of Arzhantseva-Lysenok and Sambusetti using a geometric approach.
Citation: Stéphane Sabourau. Growth of quotients of groups acting by isometries on Gromov-hyperbolic spaces. Journal of Modern Dynamics, 2013, 7 (2) : 269-290. doi: 10.3934/jmd.2013.7.269
References:
[1]

G. N. Arzhantseva and I. G. Lysenok, Growth tightness for word-hyperbolic groups, Math. Z., 241 (2002), 597-611. doi: 10.1007/s00209-002-0434-6.  Google Scholar

[2]

M. Bonk and O. Schramm, Embeddings of Gromov-hyperbolic spaces, Geom. Funct. Anal., 10 (2000), 266-306. doi: 10.1007/s000390050009.  Google Scholar

[3]

T. Ceccherini-Silberstein and F. Scarabotti, Random walks, entropy and hopfianity of free groups, in "Random Walks and Geometry'' (Proceedings of the workshop held in Vienna, June 18-July 13, 2001) (ed. Vadim A. Kaimanovich in collaboration with Klaus Schmidt and Wolfgang Woess), Walter de Gruyter, Berlin, (2004), 413-419.  Google Scholar

[4]

M. Coornaert, Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific J. Math., 159 (1993), 241-270. doi: 10.2140/pjm.1993.159.241.  Google Scholar

[5]

M. Coornaert, T. Delzant and A. Papadopoulos, "Géométrie et Théorie des Groupes. Les Groupes Hyperboliques de Gromov,'' Lecture Notes in Mathematics, 1441, Springer-Verlag, Berlin, 1990.  Google Scholar

[6]

R. Coulon, Growth of periodic quotients of hyperbolic groups,, \arXiv{1211.4271}., ().   Google Scholar

[7]

F. Dal'Bo, J.-P. Otal and M. Peigné, Séries de Poincaré des groupes géométriquement finis, Israel J. Math., 118 (2000), 109-124. doi: 10.1007/BF02803518.  Google Scholar

[8]

F. Dal'Bo, M. Peigné, J.-C. Picaud and A. Sambusetti, On the growth of quotients of Kleinian groups, Ergodic Theory Dynam. Systems, 31 (2011), 835-851. doi: 10.1017/S0143385710000131.  Google Scholar

[9]

É. Ghys and P. de la Harpe, eds., "Sur les Groupes Hyperboliques d'après Mikhael Gromov,'' Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988, Progress in Mathematics, 83, Birkhäuser Boston, Inc., Boston, MA, 1990.  Google Scholar

[10]

R. Grigorchuk and P. de la Harpe, On problems related to growth, entropy, and spectrum in group theory, J. Dynam. Control Systems, 3 (1997), 51-89. doi: 10.1007/BF02471762.  Google Scholar

[11]

M. Gromov, Hyperbolic groups, in "Essays in Group Theory,'' Math. Sci. Res. Inst. Publ., 8, Springer, New York, (1987), 75-263. doi: 10.1007/978-1-4613-9586-7_3.  Google Scholar

[12]

G. Margulis, "Discrete Subgroups of Semisimple Lie Groups,'' Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 17, Springer-Verlag, Berlin, 1991.  Google Scholar

[13]

A. Sambusetti, On minimal growth in group theory and Riemannian geometry, in "Differential Geometry, Valencia, 2001,'' World Sci. Publ., River Edge, NJ, (2002), 268-280.  Google Scholar

[14]

A. Sambusetti, Growth tightness of surface groups, Expo. Math., 20 (2002), 345-363. doi: 10.1016/S0723-0869(02)80012-3.  Google Scholar

[15]

A. Sambusetti, Growth tightness of free and amalgamated products, Ann. Sci. École Norm. Sup. (4), 35 (2002), 477-488. doi: 10.1016/S0012-9593(02)01101-1.  Google Scholar

[16]

A. Sambusetti, Growth tightness of negatively curved manifolds, C. R. Math. Acad. Sci. Paris, 336 (2003), 487-491. doi: 10.1016/S1631-073X(03)00086-4.  Google Scholar

[17]

A. Sambusetti, Growth tightness in group theory and Riemannian geometry, in "Recent Advances in Geometry and Topology,'' Cluj Univ. Press, Cluj-Napoca, (2004), 341-352.  Google Scholar

[18]

A. Sambusetti, Asymptotic properties of coverings in negative curvature, Geom. Topol., 12 (2008), 617-637. doi: 10.2140/gt.2008.12.617.  Google Scholar

[19]

A. Shukhov, On the dependence of the growth exponent on the length of the defining relation, Math. Notes, 65 (1999), 510-515. doi: 10.1007/BF02675367.  Google Scholar

[20]

A. Talambutsa, Attainability of the index of exponential growth in free products of cyclic groups, Math. Notes, 78 (2005), 569-572. doi: 10.1007/s11006-005-0156-2.  Google Scholar

[21]

W. Yang, Growth tightness of groups with nontrivial Floyd boundary,, \arXiv{1301.5623}., ().   Google Scholar

show all references

References:
[1]

G. N. Arzhantseva and I. G. Lysenok, Growth tightness for word-hyperbolic groups, Math. Z., 241 (2002), 597-611. doi: 10.1007/s00209-002-0434-6.  Google Scholar

[2]

M. Bonk and O. Schramm, Embeddings of Gromov-hyperbolic spaces, Geom. Funct. Anal., 10 (2000), 266-306. doi: 10.1007/s000390050009.  Google Scholar

[3]

T. Ceccherini-Silberstein and F. Scarabotti, Random walks, entropy and hopfianity of free groups, in "Random Walks and Geometry'' (Proceedings of the workshop held in Vienna, June 18-July 13, 2001) (ed. Vadim A. Kaimanovich in collaboration with Klaus Schmidt and Wolfgang Woess), Walter de Gruyter, Berlin, (2004), 413-419.  Google Scholar

[4]

M. Coornaert, Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific J. Math., 159 (1993), 241-270. doi: 10.2140/pjm.1993.159.241.  Google Scholar

[5]

M. Coornaert, T. Delzant and A. Papadopoulos, "Géométrie et Théorie des Groupes. Les Groupes Hyperboliques de Gromov,'' Lecture Notes in Mathematics, 1441, Springer-Verlag, Berlin, 1990.  Google Scholar

[6]

R. Coulon, Growth of periodic quotients of hyperbolic groups,, \arXiv{1211.4271}., ().   Google Scholar

[7]

F. Dal'Bo, J.-P. Otal and M. Peigné, Séries de Poincaré des groupes géométriquement finis, Israel J. Math., 118 (2000), 109-124. doi: 10.1007/BF02803518.  Google Scholar

[8]

F. Dal'Bo, M. Peigné, J.-C. Picaud and A. Sambusetti, On the growth of quotients of Kleinian groups, Ergodic Theory Dynam. Systems, 31 (2011), 835-851. doi: 10.1017/S0143385710000131.  Google Scholar

[9]

É. Ghys and P. de la Harpe, eds., "Sur les Groupes Hyperboliques d'après Mikhael Gromov,'' Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988, Progress in Mathematics, 83, Birkhäuser Boston, Inc., Boston, MA, 1990.  Google Scholar

[10]

R. Grigorchuk and P. de la Harpe, On problems related to growth, entropy, and spectrum in group theory, J. Dynam. Control Systems, 3 (1997), 51-89. doi: 10.1007/BF02471762.  Google Scholar

[11]

M. Gromov, Hyperbolic groups, in "Essays in Group Theory,'' Math. Sci. Res. Inst. Publ., 8, Springer, New York, (1987), 75-263. doi: 10.1007/978-1-4613-9586-7_3.  Google Scholar

[12]

G. Margulis, "Discrete Subgroups of Semisimple Lie Groups,'' Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 17, Springer-Verlag, Berlin, 1991.  Google Scholar

[13]

A. Sambusetti, On minimal growth in group theory and Riemannian geometry, in "Differential Geometry, Valencia, 2001,'' World Sci. Publ., River Edge, NJ, (2002), 268-280.  Google Scholar

[14]

A. Sambusetti, Growth tightness of surface groups, Expo. Math., 20 (2002), 345-363. doi: 10.1016/S0723-0869(02)80012-3.  Google Scholar

[15]

A. Sambusetti, Growth tightness of free and amalgamated products, Ann. Sci. École Norm. Sup. (4), 35 (2002), 477-488. doi: 10.1016/S0012-9593(02)01101-1.  Google Scholar

[16]

A. Sambusetti, Growth tightness of negatively curved manifolds, C. R. Math. Acad. Sci. Paris, 336 (2003), 487-491. doi: 10.1016/S1631-073X(03)00086-4.  Google Scholar

[17]

A. Sambusetti, Growth tightness in group theory and Riemannian geometry, in "Recent Advances in Geometry and Topology,'' Cluj Univ. Press, Cluj-Napoca, (2004), 341-352.  Google Scholar

[18]

A. Sambusetti, Asymptotic properties of coverings in negative curvature, Geom. Topol., 12 (2008), 617-637. doi: 10.2140/gt.2008.12.617.  Google Scholar

[19]

A. Shukhov, On the dependence of the growth exponent on the length of the defining relation, Math. Notes, 65 (1999), 510-515. doi: 10.1007/BF02675367.  Google Scholar

[20]

A. Talambutsa, Attainability of the index of exponential growth in free products of cyclic groups, Math. Notes, 78 (2005), 569-572. doi: 10.1007/s11006-005-0156-2.  Google Scholar

[21]

W. Yang, Growth tightness of groups with nontrivial Floyd boundary,, \arXiv{1301.5623}., ().   Google Scholar

[1]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[2]

Van Cyr, Bryna Kra. The automorphism group of a minimal shift of stretched exponential growth. Journal of Modern Dynamics, 2016, 10: 483-495. doi: 10.3934/jmd.2016.10.483

[3]

Michael Scheutzow. Exponential growth rate for a singular linear stochastic delay differential equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1683-1696. doi: 10.3934/dcdsb.2013.18.1683

[4]

Yuri Berest, Alimjon Eshmatov, Farkhod Eshmatov. On subgroups of the Dixmier group and Calogero-Moser spaces. Electronic Research Announcements, 2011, 18: 12-21. doi: 10.3934/era.2011.18.12

[5]

Radu Saghin. Volume growth and entropy for $C^1$ partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3789-3801. doi: 10.3934/dcds.2014.34.3789

[6]

Nguyen Lam, Guozhen Lu. Existence of nontrivial solutions to Polyharmonic equations with subcritical and critical exponential growth. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2187-2205. doi: 10.3934/dcds.2012.32.2187

[7]

Federica Sani. A biharmonic equation in $\mathbb{R}^4$ involving nonlinearities with critical exponential growth. Communications on Pure & Applied Analysis, 2013, 12 (1) : 405-428. doi: 10.3934/cpaa.2013.12.405

[8]

Jiguang Bao, Nguyen Lam, Guozhen Lu. Polyharmonic equations with critical exponential growth in the whole space $ \mathbb{R}^{n}$. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 577-600. doi: 10.3934/dcds.2016.36.577

[9]

Diego D. Felix, Marcelo F. Furtado, Everaldo S. Medeiros. Semilinear elliptic problems involving exponential critical growth in the half-space. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4937-4953. doi: 10.3934/cpaa.2020219

[10]

Jian-Jun Xu, Junichiro Shimizu. Asymptotic theory for disc-like crystal growth (II): interfacial instability and pattern formation at early stage of growth. Communications on Pure & Applied Analysis, 2004, 3 (3) : 527-543. doi: 10.3934/cpaa.2004.3.527

[11]

Vadim Yu. Kaloshin and Brian R. Hunt. A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms II. Electronic Research Announcements, 2001, 7: 28-36.

[12]

Vadim Yu. Kaloshin and Brian R. Hunt. A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms I. Electronic Research Announcements, 2001, 7: 17-27.

[13]

Nicolás Matte Bon. Topological full groups of minimal subshifts with subgroups of intermediate growth. Journal of Modern Dynamics, 2015, 9: 67-80. doi: 10.3934/jmd.2015.9.67

[14]

Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, 2021, 20 (5) : 2065-2100. doi: 10.3934/cpaa.2021058

[15]

A. Giambruno and M. Zaicev. Minimal varieties of algebras of exponential growth. Electronic Research Announcements, 2000, 6: 40-44.

[16]

Svetlana Pastukhova, Valeria Chiadò Piat. Homogenization of multivalued monotone operators with variable growth exponent. Networks & Heterogeneous Media, 2020, 15 (2) : 281-305. doi: 10.3934/nhm.2020013

[17]

Olivier Druet, Emmanuel Hebey and Frederic Robert. A $C^0$-theory for the blow-up of second order elliptic equations of critical Sobolev growth. Electronic Research Announcements, 2003, 9: 19-25.

[18]

Jian-Jun Xu, Junichiro Shimizu. Asymptotic theory for disc-like crystal growth (I) --- Basic state solutions. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1091-1116. doi: 10.3934/dcdsb.2004.4.1091

[19]

Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75

[20]

Frank Blume. Realizing subexponential entropy growth rates by cutting and stacking. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3435-3459. doi: 10.3934/dcdsb.2015.20.3435

2020 Impact Factor: 0.848

Metrics

  • PDF downloads (70)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]