-
Previous Article
Some virtually abelian subgroups of the group of analytic symplectic diffeomorphisms of a surface
- JMD Home
- This Issue
- Next Article
Nonstandard smooth realization of translations on the torus
1. | 1 allee Vauban, 92320 Chatillon, France |
References:
[1] |
D. V. Anosov and A. B. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trans. Moscow Math. Soc., 23 (1970), 1-35. |
[2] |
B. Fayad and M. Saprykina, Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary, Ann. Sci. Éole Norm. Sup. (4), 38 (2005), 339-364.
doi: 10.1016/j.ansens.2005.03.004. |
[3] |
B. Fayad, M. Saprykina and A. Windsor, Non-standard smooth realizations of Liouville rotations, Ergodic Theory and Dynam. Systems, 27 (2007), 1803-1818.
doi: 10.1017/S0143385707000314. |
[4] |
P. R. Halmos, Lectures on Ergodic Theory, Publications of the Mathematical Society of Japan, No. 3, The Mathematical Society of Japan, 1956. |
[5] |
A. B. Katok and A. M. Stepin, Approximations in ergodic theory, Russ. Math. Surv., 22 (1967), 77-102.
doi: 10.1070/RM1967v022n05ABEH001227. |
[6] |
B. Weiss, The isomorphism problem in ergodic theory, Bull. Amer. Math. Soc., 78 (1972), 668-684. |
show all references
References:
[1] |
D. V. Anosov and A. B. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trans. Moscow Math. Soc., 23 (1970), 1-35. |
[2] |
B. Fayad and M. Saprykina, Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary, Ann. Sci. Éole Norm. Sup. (4), 38 (2005), 339-364.
doi: 10.1016/j.ansens.2005.03.004. |
[3] |
B. Fayad, M. Saprykina and A. Windsor, Non-standard smooth realizations of Liouville rotations, Ergodic Theory and Dynam. Systems, 27 (2007), 1803-1818.
doi: 10.1017/S0143385707000314. |
[4] |
P. R. Halmos, Lectures on Ergodic Theory, Publications of the Mathematical Society of Japan, No. 3, The Mathematical Society of Japan, 1956. |
[5] |
A. B. Katok and A. M. Stepin, Approximations in ergodic theory, Russ. Math. Surv., 22 (1967), 77-102.
doi: 10.1070/RM1967v022n05ABEH001227. |
[6] |
B. Weiss, The isomorphism problem in ergodic theory, Bull. Amer. Math. Soc., 78 (1972), 668-684. |
[1] |
Oliver Butterley, Carlangelo Liverani. Smooth Anosov flows: Correlation spectra and stability. Journal of Modern Dynamics, 2007, 1 (2) : 301-322. doi: 10.3934/jmd.2007.1.301 |
[2] |
Zhenbo Wang. Worst-case performance of the successive approximation algorithm for four identical knapsacks. Journal of Industrial and Management Optimization, 2012, 8 (3) : 651-656. doi: 10.3934/jimo.2012.8.651 |
[3] |
Andrey Gogolev. Smooth conjugacy of Anosov diffeomorphisms on higher-dimensional tori. Journal of Modern Dynamics, 2008, 2 (4) : 645-700. doi: 10.3934/jmd.2008.2.645 |
[4] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[5] |
Luis Barreira, Claudia Valls. Topological conjugacies and behavior at infinity. Communications on Pure and Applied Analysis, 2014, 13 (2) : 687-701. doi: 10.3934/cpaa.2014.13.687 |
[6] |
Rafael de la Llave, A. Windsor. Smooth dependence on parameters of solutions to cohomology equations over Anosov systems with applications to cohomology equations on diffeomorphism groups. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1141-1154. doi: 10.3934/dcds.2011.29.1141 |
[7] |
Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006 |
[8] |
João P. Almeida, Albert M. Fisher, Alberto Adrego Pinto, David A. Rand. Anosov diffeomorphisms. Conference Publications, 2013, 2013 (special) : 837-845. doi: 10.3934/proc.2013.2013.837 |
[9] |
Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019 |
[10] |
Walter Briec, Bernardin Solonandrasana. Some remarks on a successive projection sequence. Journal of Industrial and Management Optimization, 2006, 2 (4) : 451-466. doi: 10.3934/jimo.2006.2.451 |
[11] |
Yunping Jiang. On a question of Katok in one-dimensional case. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1209-1213. doi: 10.3934/dcds.2009.24.1209 |
[12] |
Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195 |
[13] |
Peter Giesl. Necessary condition for the basin of attraction of a periodic orbit in non-smooth periodic systems. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 355-373. doi: 10.3934/dcds.2007.18.355 |
[14] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial and Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[15] |
Lucas Backes. On the periodic approximation of Lyapunov exponents for semi-invertible cocycles. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6353-6368. doi: 10.3934/dcds.2017275 |
[16] |
Alexander Gorodnik, Theron Hitchman, Ralf Spatzier. Regularity of conjugacies of algebraic actions of Zariski-dense groups. Journal of Modern Dynamics, 2008, 2 (3) : 509-540. doi: 10.3934/jmd.2008.2.509 |
[17] |
L. Bakker. The Katok-Spatzier conjecture, generalized symmetries, and equilibrium-free flows. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1183-1200. doi: 10.3934/cpaa.2013.12.1183 |
[18] |
Meera G. Mainkar, Cynthia E. Will. Examples of Anosov Lie algebras. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 39-52. doi: 10.3934/dcds.2007.18.39 |
[19] |
Grzegorz Graff, Jerzy Jezierski. Minimization of the number of periodic points for smooth self-maps of closed simply-connected 4-manifolds. Conference Publications, 2011, 2011 (Special) : 523-532. doi: 10.3934/proc.2011.2011.523 |
[20] |
Dingheng Pi. Periodic orbits for double regularization of piecewise smooth systems with a switching manifold of codimension two. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1055-1073. doi: 10.3934/dcdsb.2021080 |
2021 Impact Factor: 0.641
Tools
Metrics
Other articles
by authors
[Back to Top]