\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Some virtually abelian subgroups of the group of analytic symplectic diffeomorphisms of a surface

Abstract Related Papers Cited by
  • We show that if $M$ is a compact oriented surface of genus $0$ and $G$ is a subgroup of Symp$^\omega_\mu(M)$ that has an infinite normal solvable subgroup, then $G$ is virtually abelian. In particular the centralizer of an infinite order $f \in$ Symp$^\omega_\mu(M)$ is virtually abelian. Another immediate corollary is that if $G$ is a solvable subgroup of Symp$^\omega_\mu(M)$ then $G$ is virtually abelian. We also prove a special case of the Tits Alternative for subgroups of Symp$^\omega_\mu(M)$.
    Mathematics Subject Classification: Primary: 37C85; Secondary: 37E30, 37C40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Artin, Algebra, Prentice Hall, Inc., Englewood Cliffs, NJ, 1991.

    [2]

    M. Bestvina, M. Feighn and M. Handel, The Tits alternative for Out($F^n$). I. Dynamics of exponentially-growing automorphisms, Ann. of Math. (2), 151 (2000), 517-623.doi: 10.2307/121043.

    [3]

    M. Bestvina, M. Feighn and M. Handel, The Tits alternative for Out($F^n$). II. A Kolchin type theorem, Ann. of Math. (2), 161 (2005), 1-59.doi: 10.4007/annals.2005.161.1.

    [4]

    E. Bierstone and P. D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math., 67 (1988), 5-42.

    [5]

    M. Brown and J. M. Kister, Invariance of complementary domains of a fixed point set, Proc. Amer. Math. Soc., 91 (1984), 503-504.doi: 10.2307/2045329.

    [6]

    B. Farb and P. Shalen, Groups of real-analytic diffeomorphisms of the circle, Ergodic Theory Dynam. Systems, 22 (2002), 835-844.doi: 10.1017/S014338570200041X.

    [7]

    J. Franks and M. Handel, Entropy zero area preserving diffeomorphisms of $S^2$, Geometry & Topology, 16 (2012), 2187-2284.doi: 10.2140/gt.2012.16.2187.

    [8]

    J. Franks, Generalizations of the Poincaré-Birkhoff Theorem, Ann. of Math. (2), 128 (1988), 139-151.doi: 10.2307/1971464.

    [9]

    J. Franks, Recurrence and fixed points of surface homeomorphisms, Ergodic Theory Dynam. Systems, 8$^*$ (1988), 99-107.doi: 10.1017/S0143385700009366.

    [10]

    N. V. Ivanov, Subgroups of Teichmüller Modular Groups, Translated from the Russian by E. J. F. Primrose and revised by the author, Translations of Mathematical Monographs, 115, American Mathematical Society, Providence, RI, 1992.

    [11]

    A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137-173.

    [12]

    A. Katok, Hyperbolic measures and commuting maps in low dimension, Discrete Contin. Dynam. Systems, 2 (1996), 397-411.doi: 10.3934/dcds.1996.2.397.

    [13]

    J. McCarthy, A "Tits-alternative'' for subgroups of surface mapping class groups, Trans. Amer. Math. Soc., 291 (1985), 583-612.doi: 10.2307/2000100.

    [14]

    C. P. Simon, A bound for the fixed-point index of an area-preserving map with applications to mechanics, Invent. Math., 26 (1974), 187-200.doi: 10.1007/BF01418948.

    [15]

    S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.doi: 10.1090/S0002-9904-1967-11798-1.

    [16]

    S. Sternberg, Local $C^n$ transformations of the real line, Duke Math. J., 24 (1957), 97-102.doi: 10.1215/S0012-7094-57-02415-8.

    [17]

    J. Tits, Free subgroups in linear groups, J. Algebra, 20 (1972), 250-270.doi: 10.1016/0021-8693(72)90058-0.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(102) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return