Citation: |
[1] |
A. Avila, Density of positive Lyapunov exponents for quasiperiodic $SL(2,R)$-cocycles in arbitrary dimension, J. Mod. Dyn., 3 (2009), 631-636.doi: 10.3934/jmd.2009.3.631. |
[2] |
A. Avila and R. Krikorian, Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles, Ann. of Math. (2), 164 (2006), 911-940.doi: 10.4007/annals.2006.164.911. |
[3] |
A. Avila and M. Viana, Simplicity of Lyapunov spectra: A sufficient criterion, Port. Math. (N.S.), 64 (2007), 311-376.doi: 10.4171/PM/1789. |
[4] |
A. Avila and M. Viana, Extremal Lyapunov exponents: An invariance principle and applications, Invent. Math., 181 (2010), 115-189.doi: 10.1007/s00222-010-0243-1. |
[5] |
L. Barreira and Y. Pesin, Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents, Encyclopedia of Mathematics and its Applications, 115, Cambridge University Press, Cambridge, 2007. |
[6] |
C. Bonatti and M. Viana, Lyapunov exponents with multiplicity 1 for deterministic products of matrices, Ergodic Theory Dynam. Systems, 24 (2004), 1295-1330.doi: 10.1017/S0143385703000695. |
[7] |
C. Bonatti, X. Gómez-Mont and M. Viana, Généricité d'exposants de Lyapunov non-nuls pour des produits déterministes de matrices, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 579-624.doi: 10.1016/S0294-1449(02)00019-7. |
[8] |
P. Bougerol and J. Lacroix, Products of random matrices with applications to Schrödinger operators, Progress in Probability and Statistics, 8, Birkhäuser Boston, Inc., Boston, MA, 1985. |
[9] |
J. Bourgain, Hölder regularity of integrated density of states for the almost Mathieu operator in a perturbative regime, Lett. Math. Phys., 51 (2000), 83-118.doi: 10.1023/A:1007641323456. |
[10] |
J. Bourgain, Green's Function Estimates for Lattice Schr\"odinger Operators and Applications, Annals of Mathematics Studies, 158, Princeton University Press, Princeton, NJ, 2005. |
[11] |
J. Bourgain and M. Goldstein, On nonperturbative localization with quasi-periodic potential, Ann. of Math. (2), 152 (2000), 835-879.doi: 10.2307/2661356. |
[12] |
M. Campanino and A. Klein, A supersymmetric transfer matrix and differentiability of the density of states in the one-dimensional Anderson model, Comm. Math. Phys., 104 (1986), 227-241.doi: 10.1007/BF01211591. |
[13] |
P. Duarte and S. Klein, Continuity of the Lyapunov exponents for quasiperiodic cocycles, arXiv:1305.7504. |
[14] |
P. Duarte and S. Klein, Positive Lyapunov exponents for higher dimensional quasiperiodic cocycles, arXiv:1211.4002. |
[15] |
B. Fayad and R. Krikorian, Rigidity results for quasiperiodic $SL(2,R)$-cocycles, J. Mod. Dyn., 3 (2009), 497-510.doi: 10.3934/jmd.2009.3.479. |
[16] |
H. Fürstenberg, Noncommuting random products, Trans. Amer. Math. Soc., 108 (1963), 377-428.doi: 10.1090/S0002-9947-1963-0163345-0. |
[17] |
H. Fürstenberg and H. Kesten, Products of random matrices, Ann. Math. Statist., 31 (1960), 457-469.doi: 10.1214/aoms/1177705909. |
[18] |
M. Goldstein and W. Schlag, Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions, Ann. of Math. (2), 154 (2001), 155-203.doi: 10.2307/3062114. |
[19] |
M. Goldstein and W. Schlag, Fine properties of the integrated density of states and a quantitative separation property of the Dirichlet eigenvalues, Geom. Funct. Anal., 18 (2008), 755-869.doi: 10.1007/s00039-008-0670-y. |
[20] |
M. Goldstein and W. Schlag, On resonances and the formation of gaps in the spectrum of quasi-periodic Schrödinger equations, Ann. of Math. (2), 173 (2011), 337-475.doi: 10.4007/annals.2011.173.1.9. |
[21] |
M. Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnol'd et de Moser sur le tore de dimension $2$, Comment. Math. Helv., 58 (1983), 453-502.doi: 10.1007/BF02564647. |
[22] |
R. Krikorian, Global density of reducible quasi-periodic cocycles on $\mathbbT\times SU(2)$, Ann. of Math. (2), 154 (2001), 269-326.doi: 10.2307/3062098. |
[23] |
F. Ledrappier, Quelques propriétés des exposants caractéristiques, École d'été de probabilités de Saint-Flour, XII - 1982, Lecture Notes in Math., 1097, Springer, Berlin, 1984, 305-396.doi: 10.1007/BFb0099434. |
[24] |
É. Le Page, Théorèmes limites pour les produits de matrices aléatoires, in Probability Measures on Groups (Oberwolfach, 1981), Lecture Notes in Math., 928, Springer, Berlin-New York, 1982, 258-303. |
[25] |
V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov exponents of dynamical systems, (Russian) Trudy Moskov. Mat. Obšč. 19 (1968), 179-210. |
[26] |
M. S. Raghunathan, A proof of Oseledec's multiplicative ergodic theorem, Israel J. Math., 32 (1979), 356-362.doi: 10.1007/BF02760464. |
[27] |
D. Ruelle, Ergodic theory of differentiable dynamical systems, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 27-58. |
[28] |
B. Simon and M. Taylor, Harmonic analysis on $\mathbbSL(2,R)$ and smoothness of the density of states in the one-dimensional Anderson model, Comm. Math. Phys., 101 (1985), 1-19.doi: 10.1007/BF01212354. |