-
Previous Article
Erratum: Billiards in nearly isosceles triangles
- JMD Home
- This Issue
-
Next Article
Minimal yet measurable foliations
Pseudo-integrable billiards and arithmetic dynamics
1. | Department of Mathematical Sciences, University of Texas at Dallas, FO 35, 800West Campbell Road, TX 75080 USA, Mathematical Institute SANU, Kneza Mihaila 36, Belgrade, Serbia |
2. | Mathematical Institute SANU, Kneza Mihaila 36, Belgrade, Serbia |
References:
[1] |
V. I. Arnold, Mathematical Methods of Classical Mechanics,, Graduate Texts in Mathematics, (1978).
|
[2] |
V. I. Arnold, Poly-integrable flows,, (Russian) Algebra i Analiz, 4 (1992), 54.
|
[3] |
J. S. Athreya, A. Eskin and A. Zorich, Right-angled billiards and volumes of moduli spaces of quadratic differentials on $\mathbb CP^1$,, , (2013). Google Scholar |
[4] |
H. J. M. Bos, C. Kers, F. Oort and D. W. Raven, Poncelet's closure theorem,, Expo. Math., 5 (1987), 289.
|
[5] |
A. Cayley, Note on the porism of the in-and-circumscribed polygon,, Philosophical Magazine, 6 (1853), 99. Google Scholar |
[6] |
A. Cayley, Developments on the porism of the in-and-circumscribed polygon,, Philosophical Magazine, 7 (1854), 339. Google Scholar |
[7] |
M. Chasles, Géométrie pure. Théorèmes sur les sections coniques confocales,, Ann. Math. Pures Appl. [Ann. Gergonne], 18 (): 269.
|
[8] |
G. Darboux, Sur les polygones inscrits et circonscrits à l'ellipsoĩde,, Bulletin de la Société Philomathique, 7 (1870), 92. Google Scholar |
[9] |
V. Dragović and M. Radnović, Cayley-type conditions for billiards within $k$ quadrics in $\mathbf R^d$,, J. Phys. A, 37 (2004), 1269.
doi: 10.1088/0305-4470/37/4/014. |
[10] |
V. Dragović and M. Radnović, A survey of the analytical description of periodic elliptical billiard trajectories,, J. Math. Sci. (N. Y.), 135 (2006), 3244.
doi: 10.1007/s10958-006-0154-2. |
[11] |
V. Dragović and M. Radnović, Geometry of integrable billiards and pencils of quadrics,, J. Math. Pures Appl. (9), 85 (2006), 758.
doi: 10.1016/j.matpur.2005.12.002. |
[12] |
V. Dragović and M. Radnović, Bifurcations of Liouville tori in elliptical billiards,, Regul. Chaotic Dyn., 14 (2009), 479.
doi: 10.1134/S1560354709040054. |
[13] |
V. Dragović and M. Radnović, Poncelet Porisms and Beyond. Integrable Billiards, Hyperelliptic Jacobians and Pencils of Quadrics,, Frontiers in Mathematics, (2011).
doi: 10.1007/978-3-0348-0015-0. |
[14] |
J. Fay, Kernel functions, analytic torsion, and moduli spaces,, Mem. Amer. Math. Soc., 96 (1992).
doi: 10.1090/memo/0464. |
[15] |
L. Flatto, Poncelet's Theorem,, Chapter 15 by S. Tabachnikov, (2009).
|
[16] |
C. Jacobi, Fundamenta Nova Theoriae Functiorum Ellipticarum,, 1829., (). Google Scholar |
[17] |
C. Jacobi, Gesammelte Werke: Vorlesungen über Dynamic. Supplementband,, Berlin, (1884). Google Scholar |
[18] |
J. L. King, Three problems in search of a measure,, Amer. Math. Monthly, 101 (1994), 609.
doi: 10.2307/2974690. |
[19] |
V. Kozlov and D. Treshchëv, Billiards,, Amer. Math. Soc., (1991).
|
[20] |
V. V. Kozlov, Dynamical systems on a torus with multivalued integrals,, (Russian) Tr. Mat. Inst. Steklova, 256 (2007), 201.
doi: 10.1134/S0081543807010105. |
[21] |
M. Levi and S. Tabachnikov, The Poncelet grid and billiards in ellipses,, Amer. Math. Monthly, 114 (2007), 895.
|
[22] |
A. G. Maier, Trajectories on closable orientable surfaces,, (Russian) Rec. Math. [Mat. Sbornik] N.S., 12(54) (1943), 71.
|
[23] |
H. Masur and S. Tabachnikov, Rational billiards and flat structures,, in Handbook of Dynamical Systems, (2002), 1015.
doi: 10.1016/S1874-575X(02)80015-7. |
[24] |
S. P. Novikov, The Hamiltonian formalism and a multivalued analogue of Morse theory,, (Russian) Uspekhi Mat. Nauk, 37 (1982), 3.
|
[25] |
J. V. Poncelet, Traité des Propriétés Projectives des Figures,, Mett, (1822). Google Scholar |
[26] |
P. J. Richens and M. V. Berry, Pseudointegrable systems in classical and quantum mechanics,, Physica D, 2 (1981), 495.
doi: 10.1016/0167-2789(81)90024-5. |
[27] |
R. Schwartz, The Poncelet grid,, Adv. Geom., 7 (2007), 157.
doi: 10.1515/ADVGEOM.2007.010. |
[28] |
S. Tabachnikov, Geometry and Billiards,, Student Mathematical Library, (2005).
|
[29] |
W. A. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl Theorem mod 2,, Trans. Amer. Math. Soc., 140 (1969), 1.
|
[30] |
M. Viana, Dynamics of Interval Exchange Maps and Teichmüller flows,, Lecture Notes, (2008). Google Scholar |
[31] |
A. N. Zemljakov and A. B. Katok, Topological transitivity of billiards in polygons,, (Russian) Mat. Zametki, 18 (1975), 291.
|
[32] |
A. Zorich, Flat surfaces,, in Frontiers in Number Theory, (2006), 437.
doi: 10.1007/978-3-540-31347-2_13. |
show all references
References:
[1] |
V. I. Arnold, Mathematical Methods of Classical Mechanics,, Graduate Texts in Mathematics, (1978).
|
[2] |
V. I. Arnold, Poly-integrable flows,, (Russian) Algebra i Analiz, 4 (1992), 54.
|
[3] |
J. S. Athreya, A. Eskin and A. Zorich, Right-angled billiards and volumes of moduli spaces of quadratic differentials on $\mathbb CP^1$,, , (2013). Google Scholar |
[4] |
H. J. M. Bos, C. Kers, F. Oort and D. W. Raven, Poncelet's closure theorem,, Expo. Math., 5 (1987), 289.
|
[5] |
A. Cayley, Note on the porism of the in-and-circumscribed polygon,, Philosophical Magazine, 6 (1853), 99. Google Scholar |
[6] |
A. Cayley, Developments on the porism of the in-and-circumscribed polygon,, Philosophical Magazine, 7 (1854), 339. Google Scholar |
[7] |
M. Chasles, Géométrie pure. Théorèmes sur les sections coniques confocales,, Ann. Math. Pures Appl. [Ann. Gergonne], 18 (): 269.
|
[8] |
G. Darboux, Sur les polygones inscrits et circonscrits à l'ellipsoĩde,, Bulletin de la Société Philomathique, 7 (1870), 92. Google Scholar |
[9] |
V. Dragović and M. Radnović, Cayley-type conditions for billiards within $k$ quadrics in $\mathbf R^d$,, J. Phys. A, 37 (2004), 1269.
doi: 10.1088/0305-4470/37/4/014. |
[10] |
V. Dragović and M. Radnović, A survey of the analytical description of periodic elliptical billiard trajectories,, J. Math. Sci. (N. Y.), 135 (2006), 3244.
doi: 10.1007/s10958-006-0154-2. |
[11] |
V. Dragović and M. Radnović, Geometry of integrable billiards and pencils of quadrics,, J. Math. Pures Appl. (9), 85 (2006), 758.
doi: 10.1016/j.matpur.2005.12.002. |
[12] |
V. Dragović and M. Radnović, Bifurcations of Liouville tori in elliptical billiards,, Regul. Chaotic Dyn., 14 (2009), 479.
doi: 10.1134/S1560354709040054. |
[13] |
V. Dragović and M. Radnović, Poncelet Porisms and Beyond. Integrable Billiards, Hyperelliptic Jacobians and Pencils of Quadrics,, Frontiers in Mathematics, (2011).
doi: 10.1007/978-3-0348-0015-0. |
[14] |
J. Fay, Kernel functions, analytic torsion, and moduli spaces,, Mem. Amer. Math. Soc., 96 (1992).
doi: 10.1090/memo/0464. |
[15] |
L. Flatto, Poncelet's Theorem,, Chapter 15 by S. Tabachnikov, (2009).
|
[16] |
C. Jacobi, Fundamenta Nova Theoriae Functiorum Ellipticarum,, 1829., (). Google Scholar |
[17] |
C. Jacobi, Gesammelte Werke: Vorlesungen über Dynamic. Supplementband,, Berlin, (1884). Google Scholar |
[18] |
J. L. King, Three problems in search of a measure,, Amer. Math. Monthly, 101 (1994), 609.
doi: 10.2307/2974690. |
[19] |
V. Kozlov and D. Treshchëv, Billiards,, Amer. Math. Soc., (1991).
|
[20] |
V. V. Kozlov, Dynamical systems on a torus with multivalued integrals,, (Russian) Tr. Mat. Inst. Steklova, 256 (2007), 201.
doi: 10.1134/S0081543807010105. |
[21] |
M. Levi and S. Tabachnikov, The Poncelet grid and billiards in ellipses,, Amer. Math. Monthly, 114 (2007), 895.
|
[22] |
A. G. Maier, Trajectories on closable orientable surfaces,, (Russian) Rec. Math. [Mat. Sbornik] N.S., 12(54) (1943), 71.
|
[23] |
H. Masur and S. Tabachnikov, Rational billiards and flat structures,, in Handbook of Dynamical Systems, (2002), 1015.
doi: 10.1016/S1874-575X(02)80015-7. |
[24] |
S. P. Novikov, The Hamiltonian formalism and a multivalued analogue of Morse theory,, (Russian) Uspekhi Mat. Nauk, 37 (1982), 3.
|
[25] |
J. V. Poncelet, Traité des Propriétés Projectives des Figures,, Mett, (1822). Google Scholar |
[26] |
P. J. Richens and M. V. Berry, Pseudointegrable systems in classical and quantum mechanics,, Physica D, 2 (1981), 495.
doi: 10.1016/0167-2789(81)90024-5. |
[27] |
R. Schwartz, The Poncelet grid,, Adv. Geom., 7 (2007), 157.
doi: 10.1515/ADVGEOM.2007.010. |
[28] |
S. Tabachnikov, Geometry and Billiards,, Student Mathematical Library, (2005).
|
[29] |
W. A. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl Theorem mod 2,, Trans. Amer. Math. Soc., 140 (1969), 1.
|
[30] |
M. Viana, Dynamics of Interval Exchange Maps and Teichmüller flows,, Lecture Notes, (2008). Google Scholar |
[31] |
A. N. Zemljakov and A. B. Katok, Topological transitivity of billiards in polygons,, (Russian) Mat. Zametki, 18 (1975), 291.
|
[32] |
A. Zorich, Flat surfaces,, in Frontiers in Number Theory, (2006), 437.
doi: 10.1007/978-3-540-31347-2_13. |
[1] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[2] |
V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153 |
[3] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[4] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[5] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[6] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[7] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[8] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[9] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[10] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[11] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[12] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[13] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
2019 Impact Factor: 0.465
Tools
Metrics
Other articles
by authors
[Back to Top]