January  2014, 8(1): 15-24. doi: 10.3934/jmd.2014.8.15

On Omri Sarig's work on the dynamics on surfaces (Brin Prize article)

1. 

LPMA, Boîte Courrier 188, 4, Place Jussieu, 75252 PARIS cedex 05, France

Published  July 2014

N/A
Citation: François Ledrappier. On Omri Sarig's work on the dynamics on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 15-24. doi: 10.3934/jmd.2014.8.15
References:
[1]

R. Adler and B. Weiss, Similarities of the Automorphisms of the Torus, Memoirs of the Amer. Math. Soc., 98, Amer. Mat. Soc. Providence, RI, 1970.

[2]

M. Babillot, On the classification of invariant measures for horosphere foliations on nilpotent covers of negatively curved manifolds, in Random Walks and Geometry (ed. V. A. Kaimanovich), Walter de Gruyter GmbH & Co. KG, Berlin, 2004, 319-335.

[3]

K. Berg, Convolutions of invariant measures, maximal entropy, Math. Systems Theory, 3 (1969), 146-150. doi: 10.1007/BF01746521.

[4]

P. Berger, Properties of the maximal entropy measure and geometry of Hénon attractors, arXiv:1202.2822, (2012).

[5]

M. Babillot and F. Ledrappier, Geodesic paths and horocycle flows on abelian covers, in Lie Groups and Ergodic Theory (Mumbai, 1996), Tata Inst. Fund. Res. Stud. Math., 14, Tata Inst. Fund. Res., Bombay, 1998, 1-32.

[6]

R. Bowen, Periodic points and measures for Axiom $A$ diffeomorphisms, Trans.Amer. Math. Soc., 154 (1971), 377-397.

[7]

M. Boyle, D. Fiebig and U. Fiebig, Residual entropy, conditional entropy and subshift covers, Forum Math., 14 (2002), 713-747. doi: 10.1515/form.2002.031.

[8]

M. Burger, Horocycle flows on geometrically finite surfaces, Duke Math. J., 61 (1990), 779-803. doi: 10.1215/S0012-7094-90-06129-0.

[9]

D. Burguet, Symbolic extensions in intermediate smoothness on surfaces, Ann. Sci. Éc. Norm. Sup. (4), 45 (2012), 337-362.

[10]

J. Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math., 100 (1997), 125-161. doi: 10.1007/BF02773637.

[11]

S. G. Dani and J. Smillie, Uniform distribution of horocycle orbits for Fuchsian groups, Duke Math. J., 51 (1984), 185-194. doi: 10.1215/S0012-7094-84-05110-X.

[12]

T. Downarowicz and S. Newhouse, Symbolic extensions and smooth dynamical systems, Invent. Math., 160 (2005), 453-499. doi: 10.1007/s00222-004-0413-0.

[13]

N. Friedman and D. S. Ornstein, On isomorphism of weak Bernoulli transformations, Advances Math., 5 (1970), 365-394. doi: 10.1016/0001-8708(70)90010-1.

[14]

H. Furstenberg, The unique ergodicity of the horocycle flow, Recent Advances in Topological Dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund), Springer Lect. Notes Math., 318, Springer, Berlin, 1972, 95-115.

[15]

F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. Math., 34 (1979), 213-237; Israel J. Math., 38 (1981), 107-115. doi: 10.1007/BF02761854.

[16]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137-173.

[17]

V. Kaloshin, Generic diffeomorphisms with superexponential growth of number of periodic orbits, Comm. Math. Phys., 211 (2000), 253-271. doi: 10.1007/s002200050811.

[18]

F. Ledrappier, Propriétés ergodiques des mesures de Sinaï, Inst. Hautes Études Sci. Publ. Math., 59 (1984), 163-188.

[19]

F. Ledrappier and O. Sarig, Invariant measures for horocycle flows on periodic hyperbolic surfaces, Israel J. Math., 160 (2007), 281-317. doi: 10.1007/s11856-007-0064-0.

[20]

S. Newhouse, Continuity properties of entropy, Ann. Math. (2), 129 (1989), 215-235. doi: 10.2307/1971492.

[21]

W. Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc., 112 (1964), 55-66. doi: 10.1090/S0002-9947-1964-0161372-1.

[22]

S. J. Patterson, Spectral theory and Fuchsian groups, Math. Proc. Cambridge Phil. Soc., 81 (1977), 59-75. doi: 10.1017/S030500410000027X.

[23]

S. J. Patterson, Some examples of Fuchsian groups, Proc. London Math. Soc. (3), 39 (1979), 276-298. doi: 10.1112/plms/s3-39.2.276.

[24]

Y. B. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Russian Math. Surveys, 32 (1977), 55-114. doi: 10.1070/RM1977v032n04ABEH001639.

[25]

Y. Pesin, On the work of Omri Sarig on infinite Markov chains and thermodynamical formalism, J. Modern Dynamics, (2014).

[26]

M. Ratner, On Raghunathan's measure conjecture, Ann. Math. (2), 134 (1991), 545-607. doi: 10.2307/2944357.

[27]

T. Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N. S.), 95 (2003).

[28]

O. Sarig, Invariant Radon measures for horocycle flows on Abelian covers, Invent. Math., 157 (2004), 519-551. doi: 10.1007/s00222-004-0357-4.

[29]

O. Sarig, The horocycle flow and the Laplacian on hyperbolic surfaces of infinite genus, Geom. Funct. Anal., 19 (2010), 1757-1812. doi: 10.1007/s00039-010-0048-9.

[30]

O. Sarig, Bernoulli equilibrium states for surface diffeomorphisms, J. Modern Dynamics, 5 (2011), 593-608. doi: 10.3934/jmd.2011.5.593.

[31]

O. Sarig, Symbolic dynamics for surface diffeomorphisms with positive entropy, J. Amer. Math. Soc., 26 (2013), 341-426. doi: 10.1090/S0894-0347-2012-00758-9.

[32]

O. Sarig, Thermodynamic formalism for countable Markov shifts, Ergodic Theory Dynam. Systems, 19 (1999), 1565-1593. doi: 10.1017/S0143385799146820.

[33]

B. Schapira, Equidistribution of the horocycles of a geomertically finite surface, Int. Mat. Res. Not., (2005), 2447-2471. doi: 10.1155/IMRN.2005.2447.

[34]

M. Shub, Global Stability of Dynamical Systems, Springer-Verlag, New York, 1987. doi: 10.1007/978-1-4757-1947-5.

[35]

Y. G. Sinaĭ, Construction of Markov partitions, Functional Anal. Appl., 2 (1968), 245-253. doi: 10.1007/BF01076126.

[36]

B. Weiss, Intrinsically ergodic systems, Bull. Amer. Math. Soc., 76 (1970), 1266-1269. doi: 10.1090/S0002-9904-1970-12632-5.

[37]

L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. Math. (2), 147 (1988), 585-650. doi: 10.2307/120960.

show all references

References:
[1]

R. Adler and B. Weiss, Similarities of the Automorphisms of the Torus, Memoirs of the Amer. Math. Soc., 98, Amer. Mat. Soc. Providence, RI, 1970.

[2]

M. Babillot, On the classification of invariant measures for horosphere foliations on nilpotent covers of negatively curved manifolds, in Random Walks and Geometry (ed. V. A. Kaimanovich), Walter de Gruyter GmbH & Co. KG, Berlin, 2004, 319-335.

[3]

K. Berg, Convolutions of invariant measures, maximal entropy, Math. Systems Theory, 3 (1969), 146-150. doi: 10.1007/BF01746521.

[4]

P. Berger, Properties of the maximal entropy measure and geometry of Hénon attractors, arXiv:1202.2822, (2012).

[5]

M. Babillot and F. Ledrappier, Geodesic paths and horocycle flows on abelian covers, in Lie Groups and Ergodic Theory (Mumbai, 1996), Tata Inst. Fund. Res. Stud. Math., 14, Tata Inst. Fund. Res., Bombay, 1998, 1-32.

[6]

R. Bowen, Periodic points and measures for Axiom $A$ diffeomorphisms, Trans.Amer. Math. Soc., 154 (1971), 377-397.

[7]

M. Boyle, D. Fiebig and U. Fiebig, Residual entropy, conditional entropy and subshift covers, Forum Math., 14 (2002), 713-747. doi: 10.1515/form.2002.031.

[8]

M. Burger, Horocycle flows on geometrically finite surfaces, Duke Math. J., 61 (1990), 779-803. doi: 10.1215/S0012-7094-90-06129-0.

[9]

D. Burguet, Symbolic extensions in intermediate smoothness on surfaces, Ann. Sci. Éc. Norm. Sup. (4), 45 (2012), 337-362.

[10]

J. Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math., 100 (1997), 125-161. doi: 10.1007/BF02773637.

[11]

S. G. Dani and J. Smillie, Uniform distribution of horocycle orbits for Fuchsian groups, Duke Math. J., 51 (1984), 185-194. doi: 10.1215/S0012-7094-84-05110-X.

[12]

T. Downarowicz and S. Newhouse, Symbolic extensions and smooth dynamical systems, Invent. Math., 160 (2005), 453-499. doi: 10.1007/s00222-004-0413-0.

[13]

N. Friedman and D. S. Ornstein, On isomorphism of weak Bernoulli transformations, Advances Math., 5 (1970), 365-394. doi: 10.1016/0001-8708(70)90010-1.

[14]

H. Furstenberg, The unique ergodicity of the horocycle flow, Recent Advances in Topological Dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund), Springer Lect. Notes Math., 318, Springer, Berlin, 1972, 95-115.

[15]

F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. Math., 34 (1979), 213-237; Israel J. Math., 38 (1981), 107-115. doi: 10.1007/BF02761854.

[16]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137-173.

[17]

V. Kaloshin, Generic diffeomorphisms with superexponential growth of number of periodic orbits, Comm. Math. Phys., 211 (2000), 253-271. doi: 10.1007/s002200050811.

[18]

F. Ledrappier, Propriétés ergodiques des mesures de Sinaï, Inst. Hautes Études Sci. Publ. Math., 59 (1984), 163-188.

[19]

F. Ledrappier and O. Sarig, Invariant measures for horocycle flows on periodic hyperbolic surfaces, Israel J. Math., 160 (2007), 281-317. doi: 10.1007/s11856-007-0064-0.

[20]

S. Newhouse, Continuity properties of entropy, Ann. Math. (2), 129 (1989), 215-235. doi: 10.2307/1971492.

[21]

W. Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc., 112 (1964), 55-66. doi: 10.1090/S0002-9947-1964-0161372-1.

[22]

S. J. Patterson, Spectral theory and Fuchsian groups, Math. Proc. Cambridge Phil. Soc., 81 (1977), 59-75. doi: 10.1017/S030500410000027X.

[23]

S. J. Patterson, Some examples of Fuchsian groups, Proc. London Math. Soc. (3), 39 (1979), 276-298. doi: 10.1112/plms/s3-39.2.276.

[24]

Y. B. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Russian Math. Surveys, 32 (1977), 55-114. doi: 10.1070/RM1977v032n04ABEH001639.

[25]

Y. Pesin, On the work of Omri Sarig on infinite Markov chains and thermodynamical formalism, J. Modern Dynamics, (2014).

[26]

M. Ratner, On Raghunathan's measure conjecture, Ann. Math. (2), 134 (1991), 545-607. doi: 10.2307/2944357.

[27]

T. Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N. S.), 95 (2003).

[28]

O. Sarig, Invariant Radon measures for horocycle flows on Abelian covers, Invent. Math., 157 (2004), 519-551. doi: 10.1007/s00222-004-0357-4.

[29]

O. Sarig, The horocycle flow and the Laplacian on hyperbolic surfaces of infinite genus, Geom. Funct. Anal., 19 (2010), 1757-1812. doi: 10.1007/s00039-010-0048-9.

[30]

O. Sarig, Bernoulli equilibrium states for surface diffeomorphisms, J. Modern Dynamics, 5 (2011), 593-608. doi: 10.3934/jmd.2011.5.593.

[31]

O. Sarig, Symbolic dynamics for surface diffeomorphisms with positive entropy, J. Amer. Math. Soc., 26 (2013), 341-426. doi: 10.1090/S0894-0347-2012-00758-9.

[32]

O. Sarig, Thermodynamic formalism for countable Markov shifts, Ergodic Theory Dynam. Systems, 19 (1999), 1565-1593. doi: 10.1017/S0143385799146820.

[33]

B. Schapira, Equidistribution of the horocycles of a geomertically finite surface, Int. Mat. Res. Not., (2005), 2447-2471. doi: 10.1155/IMRN.2005.2447.

[34]

M. Shub, Global Stability of Dynamical Systems, Springer-Verlag, New York, 1987. doi: 10.1007/978-1-4757-1947-5.

[35]

Y. G. Sinaĭ, Construction of Markov partitions, Functional Anal. Appl., 2 (1968), 245-253. doi: 10.1007/BF01076126.

[36]

B. Weiss, Intrinsically ergodic systems, Bull. Amer. Math. Soc., 76 (1970), 1266-1269. doi: 10.1090/S0002-9904-1970-12632-5.

[37]

L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. Math. (2), 147 (1988), 585-650. doi: 10.2307/120960.

[1]

The Editors. The 2013 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2014, 8 (1) : i-ii. doi: 10.3934/jmd.2014.8.1i

[2]

The Editors. The 2011 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2012, 6 (2) : i-ii. doi: 10.3934/jmd.2012.6.2i

[3]

The Editors. The 2008 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2008, 2 (3) : i-ii. doi: 10.3934/jmd.2008.2.3i

[4]

The Editors. The 2009 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2010, 4 (2) : i-ii. doi: 10.3934/jmd.2010.4.2i

[5]

The Editors. The 2015 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2016, 10: 173-174. doi: 10.3934/jmd.2016.10.173

[6]

The Editors. The 2018 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2019, 15: 425-426. doi: 10.3934/jmd.2019025

[7]

The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013

[8]

The Editors. The 2017 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2019, 15: 131-132. doi: 10.3934/jmd.2019015

[9]

The Editors. The 2020 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2022, 18: 101-102. doi: 10.3934/jmd.2022004

[10]

Yakov Pesin. On the work of Sarig on countable Markov chains and thermodynamic formalism. Journal of Modern Dynamics, 2014, 8 (1) : 1-14. doi: 10.3934/jmd.2014.8.1

[11]

Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615

[12]

Mikhail Lyubich. Forty years of unimodal dynamics: On the occasion of Artur Avila winning the Brin Prize. Journal of Modern Dynamics, 2012, 6 (2) : 183-203. doi: 10.3934/jmd.2012.6.183

[13]

Manfred G. Madritsch. Non-normal numbers with respect to Markov partitions. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 663-676. doi: 10.3934/dcds.2014.34.663

[14]

Michael Jakobson, Lucia D. Simonelli. Countable Markov partitions suitable for thermodynamic formalism. Journal of Modern Dynamics, 2018, 13: 199-219. doi: 10.3934/jmd.2018018

[15]

Omri M. Sarig. Bernoulli equilibrium states for surface diffeomorphisms. Journal of Modern Dynamics, 2011, 5 (3) : 593-608. doi: 10.3934/jmd.2011.5.593

[16]

Francois Ledrappier and Omri Sarig. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic Research Announcements, 2005, 11: 89-94.

[17]

Thomas Ward, Yuki Yayama. Markov partitions reflecting the geometry of $\times2$, $\times3$. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 613-624. doi: 10.3934/dcds.2009.24.613

[18]

Giovanni Forni. On the Brin Prize work of Artur Avila in Teichmüller dynamics and interval-exchange transformations. Journal of Modern Dynamics, 2012, 6 (2) : 139-182. doi: 10.3934/jmd.2012.6.139

[19]

Stefano Marmi. Some arithmetical aspects of renormalization in Teichmüller dynamics: On the occasion of Corinna Ulcigrai winning the Brin Prize. Journal of Modern Dynamics, 2022, 18: 131-147. doi: 10.3934/jmd.2022006

[20]

Alfonso Artigue. Robustly N-expansive surface diffeomorphisms. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2367-2376. doi: 10.3934/dcds.2016.36.2367

2021 Impact Factor: 0.641

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]