\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Lectures on dynamics, fractal geometry, and metric number theory

Abstract Related Papers Cited by
  • These notes are based on lectures delivered in the summer school ``Modern Dynamics and its Interaction with Analysis, Geometry and Number Theory'', held in Będlewo, Poland, in the summer of 2011. The course is an exposition of Furstenberg's conjectures on ``transversality'' of the maps $x\rightarrow ax $mod1 and $x\mapsto bx$mod1 for multiplicatively independent integers $a,b$, and of the associated problems on intersections and sums of invariant sets for these maps. The first part of the course is a short introduction to fractal geometry. The second part develops the theory of Furstenberg's CP-chains and local entropy averages, ending in proofs of the sumset problem and of the known case of the intersections conjecture.
    Mathematics Subject Classification: Primary: 28A80; Secondary: 37F99, 37A99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Broderick, Y. Bugeaud, L. Fishman, D. Kleinbock and B. Weiss, Schmidt's game, fractals, and numbers normal to no base, Math. Res. Lett., 17 (2010), 307-321.doi: 10.4310/MRL.2010.v17.n2.a10.

    [2]

    J. W. S. Cassels, On a problem of Steinhaus about normal numbers, Colloq. Math., 7 (1959), 95-101.

    [3]

    T. M. Cover and J. A. Thomas, Elements of Information Theory, Second edition, Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2006.

    [4]

    P. Erdős, Some unconventional problems in number theory, Math. Mag., 52 (1979), 67-70.doi: 10.2307/2689842.

    [5]

    K. J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, 85, Cambridge University Press, Cambridge, 1986.

    [6]

    H. Furstenberg, Intersections of Cantor sets and transversality of semigroups, in Problems in Analysis (Sympos. Salomon Bochner, Princeton Univ., Princeton, N.J., 1969), Princeton Univ. Press, Princeton, N.J., 1970, 41-59.

    [7]

    H. Furstenberg, Ergodic fractal measures and dimension conservation, Ergodic Theory Dynam. Systems, 28 (2008), 405-422.doi: 10.1017/S0143385708000084.

    [8]

    M. Hochman, Dynamics on fractals and fractal distributions, preprint, 2010.

    [9]

    M. Hochman and P. Shmerkin, Local entropy and dimension of projections, to appear in Annals of Mathematics, 2009.

    [10]

    M. Hochman and P. Shmerkin, Local entropy averages and projections of fractal measures, Ann. of Math. (2), 175 (2012), 1001-1059.doi: 10.4007/annals.2012.175.3.1.

    [11]

    B. Host, Nombres normaux, entropie, translations, Israel J. Math., 91 (1995), 419-428.doi: 10.1007/BF02761660.

    [12]

    B. R. Hunt and V. Yu. Kaloshin, How projections affect the dimension spectrum of fractal measures, Nonlinearity, 10 (1997), 1031-1046.doi: 10.1088/0951-7715/10/5/002.

    [13]

    J. C. Lagarias, Ternary expansions of powers of 2, J. Lond. Math. Soc. (2), 79 (2009), 562-588.doi: 10.1112/jlms/jdn080.

    [14]

    R. Lyons, Strong laws of large numbers for weakly correlated random variables, Michigan Math. J., 35 (1988), 353-359.doi: 10.1307/mmj/1029003816.

    [15]

    P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 44, Cambridge, 1995.doi: 10.1017/CBO9780511623813.

    [16]

    Y. Peres and P. Shmerkin, Resonance between Cantor sets, Ergodic Theory Dynam. Systems, 29 (2009), 201-221.doi: 10.1017/S0143385708000369.

    [17]

    D. Preiss, Geometry of measures in $R^n$: Distribution, rectifiability, and densities, Ann. of Math. (2), 125 (1987), 537-643.doi: 10.2307/1971410.

    [18]

    W. M. Schmidt, On normal numbers, Pacific J. Math., 10 (1960), 661-672.doi: 10.2140/pjm.1960.10.661.

    [19]

    T. Wolff, Recent work connected with the Kakeya problem, in Prospects in Mathematics (Princeton, NJ, 1996), Amer. Math. Soc., Providence, RI, 1999, 129-162.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(154) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return