January  2014, 8(1): 75-91. doi: 10.3934/jmd.2014.8.75

Topological entropy of minimal geodesics and volume growth on surfaces

1. 

Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany, Germany

2. 

Institut de Mathématiques et de Sciences Physiques (IMSP), Université d’Abomey-Calavi 01 BP 613 Porto-Novo, Benin

Received  August 2013 Revised  March 2014 Published  July 2014

Let $(M,g)$ be a compact Riemannian manifold of hyperbolic type, i.e $M$ is a manifold admitting another metric of strictly negative curvature. In this paper we study the geodesic flow restricted to the set of geodesics which are minimal on the universal covering. In particular for surfaces we show that the topological entropy of the minimal geodesics coincides with the volume entropy of $(M,g)$ generalizing work of Freire and Mañé.
Citation: Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75
References:
[1]

R. Bowen, Entropy-expansive maps,, Trans. Amer. Math. Soc., 164 (1972), 323.  doi: 10.1090/S0002-9947-1972-0285689-X.  Google Scholar

[2]

V. Bangert, Mather sets for twist maps and geodesics on tori,, in Dynamics Reported, (1988), 1.   Google Scholar

[3]

G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mañé's critical values,, Geometric and Functional Analysis, 8 (1998), 788.  doi: 10.1007/s000390050074.  Google Scholar

[4]

A. Freire and R. Mañé, On the entropy of the geodesic flow in manifolds without conjugate points,, Invent. Math., 69 (1982), 375.  doi: 10.1007/BF01389360.  Google Scholar

[5]

E. Glasmachers, Characterization of Riemannian Metrics on $T^2$ with and without Positive Topological Entropy,, Ph.D thesis, (2007).   Google Scholar

[6]

G. A. Hedlund, Geodesics on a two-dimensional Riemannian manifold with periodic coefficients,, Ann. of Math. (2), 33 (1932), 719.  doi: 10.2307/1968215.  Google Scholar

[7]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[8]

W. Klingenberg, Geodätischer Fluss auf Mannigfaltigkeiten vom hyperbolischen Typ,, Invent. Math., 14 (1971), 63.  doi: 10.1007/BF01418743.  Google Scholar

[9]

G. Knieper, Hyperbolic dynamics and riemannian geometry,, in Handbook of Dynamical Systems, (2002), 453.  doi: 10.1016/S1874-575X(02)80008-X.  Google Scholar

[10]

A. Manning, Topological entropy for geodesic flows,, Annals of Math. (2), 110 (1979), 567.  doi: 10.2307/1971239.  Google Scholar

[11]

M. Morse, A fundamental class of geodesics on any closed surface of genus greater than one,, Trans. Amer. Math. Soc., 26 (1924), 25.  doi: 10.1090/S0002-9947-1924-1501263-9.  Google Scholar

[12]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).   Google Scholar

show all references

References:
[1]

R. Bowen, Entropy-expansive maps,, Trans. Amer. Math. Soc., 164 (1972), 323.  doi: 10.1090/S0002-9947-1972-0285689-X.  Google Scholar

[2]

V. Bangert, Mather sets for twist maps and geodesics on tori,, in Dynamics Reported, (1988), 1.   Google Scholar

[3]

G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mañé's critical values,, Geometric and Functional Analysis, 8 (1998), 788.  doi: 10.1007/s000390050074.  Google Scholar

[4]

A. Freire and R. Mañé, On the entropy of the geodesic flow in manifolds without conjugate points,, Invent. Math., 69 (1982), 375.  doi: 10.1007/BF01389360.  Google Scholar

[5]

E. Glasmachers, Characterization of Riemannian Metrics on $T^2$ with and without Positive Topological Entropy,, Ph.D thesis, (2007).   Google Scholar

[6]

G. A. Hedlund, Geodesics on a two-dimensional Riemannian manifold with periodic coefficients,, Ann. of Math. (2), 33 (1932), 719.  doi: 10.2307/1968215.  Google Scholar

[7]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[8]

W. Klingenberg, Geodätischer Fluss auf Mannigfaltigkeiten vom hyperbolischen Typ,, Invent. Math., 14 (1971), 63.  doi: 10.1007/BF01418743.  Google Scholar

[9]

G. Knieper, Hyperbolic dynamics and riemannian geometry,, in Handbook of Dynamical Systems, (2002), 453.  doi: 10.1016/S1874-575X(02)80008-X.  Google Scholar

[10]

A. Manning, Topological entropy for geodesic flows,, Annals of Math. (2), 110 (1979), 567.  doi: 10.2307/1971239.  Google Scholar

[11]

M. Morse, A fundamental class of geodesics on any closed surface of genus greater than one,, Trans. Amer. Math. Soc., 26 (1924), 25.  doi: 10.1090/S0002-9947-1924-1501263-9.  Google Scholar

[12]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).   Google Scholar

[1]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[2]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[3]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021005

[4]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[5]

Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201

[6]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[7]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[8]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[9]

Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193

[10]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[11]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[12]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (100)
  • HTML views (0)
  • Cited by (4)

[Back to Top]