January  2014, 8(1): 75-91. doi: 10.3934/jmd.2014.8.75

Topological entropy of minimal geodesics and volume growth on surfaces

1. 

Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany, Germany

2. 

Institut de Mathématiques et de Sciences Physiques (IMSP), Université d’Abomey-Calavi 01 BP 613 Porto-Novo, Benin

Received  August 2013 Revised  March 2014 Published  July 2014

Let $(M,g)$ be a compact Riemannian manifold of hyperbolic type, i.e $M$ is a manifold admitting another metric of strictly negative curvature. In this paper we study the geodesic flow restricted to the set of geodesics which are minimal on the universal covering. In particular for surfaces we show that the topological entropy of the minimal geodesics coincides with the volume entropy of $(M,g)$ generalizing work of Freire and Mañé.
Citation: Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75
References:
[1]

R. Bowen, Entropy-expansive maps,, Trans. Amer. Math. Soc., 164 (1972), 323.  doi: 10.1090/S0002-9947-1972-0285689-X.  Google Scholar

[2]

V. Bangert, Mather sets for twist maps and geodesics on tori,, in Dynamics Reported, (1988), 1.   Google Scholar

[3]

G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mañé's critical values,, Geometric and Functional Analysis, 8 (1998), 788.  doi: 10.1007/s000390050074.  Google Scholar

[4]

A. Freire and R. Mañé, On the entropy of the geodesic flow in manifolds without conjugate points,, Invent. Math., 69 (1982), 375.  doi: 10.1007/BF01389360.  Google Scholar

[5]

E. Glasmachers, Characterization of Riemannian Metrics on $T^2$ with and without Positive Topological Entropy,, Ph.D thesis, (2007).   Google Scholar

[6]

G. A. Hedlund, Geodesics on a two-dimensional Riemannian manifold with periodic coefficients,, Ann. of Math. (2), 33 (1932), 719.  doi: 10.2307/1968215.  Google Scholar

[7]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[8]

W. Klingenberg, Geodätischer Fluss auf Mannigfaltigkeiten vom hyperbolischen Typ,, Invent. Math., 14 (1971), 63.  doi: 10.1007/BF01418743.  Google Scholar

[9]

G. Knieper, Hyperbolic dynamics and riemannian geometry,, in Handbook of Dynamical Systems, (2002), 453.  doi: 10.1016/S1874-575X(02)80008-X.  Google Scholar

[10]

A. Manning, Topological entropy for geodesic flows,, Annals of Math. (2), 110 (1979), 567.  doi: 10.2307/1971239.  Google Scholar

[11]

M. Morse, A fundamental class of geodesics on any closed surface of genus greater than one,, Trans. Amer. Math. Soc., 26 (1924), 25.  doi: 10.1090/S0002-9947-1924-1501263-9.  Google Scholar

[12]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).   Google Scholar

show all references

References:
[1]

R. Bowen, Entropy-expansive maps,, Trans. Amer. Math. Soc., 164 (1972), 323.  doi: 10.1090/S0002-9947-1972-0285689-X.  Google Scholar

[2]

V. Bangert, Mather sets for twist maps and geodesics on tori,, in Dynamics Reported, (1988), 1.   Google Scholar

[3]

G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mañé's critical values,, Geometric and Functional Analysis, 8 (1998), 788.  doi: 10.1007/s000390050074.  Google Scholar

[4]

A. Freire and R. Mañé, On the entropy of the geodesic flow in manifolds without conjugate points,, Invent. Math., 69 (1982), 375.  doi: 10.1007/BF01389360.  Google Scholar

[5]

E. Glasmachers, Characterization of Riemannian Metrics on $T^2$ with and without Positive Topological Entropy,, Ph.D thesis, (2007).   Google Scholar

[6]

G. A. Hedlund, Geodesics on a two-dimensional Riemannian manifold with periodic coefficients,, Ann. of Math. (2), 33 (1932), 719.  doi: 10.2307/1968215.  Google Scholar

[7]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[8]

W. Klingenberg, Geodätischer Fluss auf Mannigfaltigkeiten vom hyperbolischen Typ,, Invent. Math., 14 (1971), 63.  doi: 10.1007/BF01418743.  Google Scholar

[9]

G. Knieper, Hyperbolic dynamics and riemannian geometry,, in Handbook of Dynamical Systems, (2002), 453.  doi: 10.1016/S1874-575X(02)80008-X.  Google Scholar

[10]

A. Manning, Topological entropy for geodesic flows,, Annals of Math. (2), 110 (1979), 567.  doi: 10.2307/1971239.  Google Scholar

[11]

M. Morse, A fundamental class of geodesics on any closed surface of genus greater than one,, Trans. Amer. Math. Soc., 26 (1924), 25.  doi: 10.1090/S0002-9947-1924-1501263-9.  Google Scholar

[12]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).   Google Scholar

[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[3]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[4]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[5]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[6]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[7]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[8]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[9]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (3)

[Back to Top]