Citation: |
[1] |
A. Avila, M. Viana and A. Wilkinson, Absolute continuity, Lyapunov exponents and rigidity I: Geodesic flows, arXiv:1110.2365v2, 2011. |
[2] |
A. Baraviera and C. Bonatti, Removing zero Lyapunov exponents, Ergodic Theory and Dynamical Systems, 23 (2003), 1655-1670.doi: 10.1017/S0143385702001773. |
[3] |
L. Barreira and Y. Pesin, Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents, Encyclopedia of Mathematics and its Applications, 115, Cambridge University Press, Cambridge, 2007.doi: 10.1017/CBO9781107326026. |
[4] |
C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds, Topology, 44 (2005), 475-508.doi: 10.1016/j.top.2004.10.009. |
[5] |
M. Brin, D. Burago and D. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group, in Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, 2004, 307-312. |
[6] |
M. Brin, D. Burago and D. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus, J. Mod. Dyn., 3 (2009), 1-11.doi: 10.3934/jmd.2009.3.1. |
[7] |
M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics, 259, Springer-Verlag London, Ltd., London, 2011.doi: 10.1007/978-0-85729-021-2. |
[8] |
J. Franks, Anosov diffeomorphisms, in Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, RI, 1970, 61-93. |
[9] |
A. Gogolev, How typical are pathological foliations in partially hyperbolic dynamics: An example, Israel J. Math., 187 (2012), 493-507.doi: 10.1007/s11856-011-0088-3. |
[10] |
A. Hammerlindl, Leaf conjugacies on the torus, to appear in Ergodic Theory and Dynamical Systems, 2009. |
[11] |
A. Hammerlindl, Leaf Conjugacies on the Torus, Ph.D. Thesis, University of Toronto, Canada, 2009. |
[12] |
A. Hammerlindl and R. Potrie, Pointwise partial hyperbolicity in 3-dimensional nilmanifolds, preprint, arXiv:1302.0543, 2013. |
[13] |
A. Hammerlindl and R. Ures, Ergodicity and partial hyperbolicity on the 3-torus, Commun. Contemp. Math., 2013.doi: 10.1142/S0219199713500387. |
[14] |
M. Hirayama and Y. Pesin, Non-absolutely continuous foliations, Israel J. Math., 160 (2007), 173-187.doi: 10.1007/s11856-007-0060-4. |
[15] |
M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin-New York, 1977. |
[16] |
F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula, Ann. of Math. (2), 122 (1985), 509-539.doi: 10.2307/1971328. |
[17] |
G. Ponce and A. Tahzibi, Central Lyapunov exponents of partially hyperbolic diffeomorphisms on $\mathbbT^3$, to appear in Proceedings of AMS, 2013. |
[18] |
V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk, 22 (1967), 3-56. |
[19] |
D. Ruelle and A. Wilkinson, Absolutely singular dynamical foliations, Comm. Math. Phys., 219 (2001), 481-487.doi: 10.1007/s002200100420. |
[20] |
R. Saghin and Z. Xia, Geometric expansion, Lyapunov exponents and foliations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 689-704.doi: 10.1016/j.anihpc.2008.07.001. |
[21] |
M. Shub and A. Wilkinson, Pathological foliations and removable zero exponents, Invent. Math., 139 (2000), 495-508.doi: 10.1007/s002229900035. |
[22] |
D. Sullivan, A counterexample to the periodic orbit conjecture, Inst. Hautes Études Sci. Publ. Math., 46 (1976), 5-14. |
[23] |
R. Ures, Intrinsic ergodicity of partially hyperbolic diffeomorphisms with a hyperbolic linear part, Proc. Amer. Math. Soc., 140 (2012), 1973-1985.doi: 10.1090/S0002-9939-2011-11040-2. |
[24] |
R. Varão, Center foliation: Absolute continuity, disintegration and rigidity, to appear in Ergodic Theory and Dynamical Systems, 2014 |
[25] |
Y. Pesin, Characteristic Lyapunov exponents, and smooth ergodic theory, Russ. Math. Surv., 32 (1977), 55-114.doi: 10.1070/RM1977v032n04ABEH001639. |