-
Previous Article
On the existence of periodic orbits for magnetic systems on the two-sphere
- JMD Home
- This Volume
-
Next Article
Partial hyperbolicity and foliations in $\mathbb{T}^3$
The relative cohomology of abelian covers of the flat pillowcase
1. | Department of Mathematics, 310 Malott Hall, Cornell University, Ithaca, NY 14853, United States |
References:
[1] |
I. I. Bouw and M. Möller, Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. of Math. (2), 172 (2010), 139-185.
doi: 10.4007/annals.2010.172.139. |
[2] |
H. S. M. Coxeter, Regular Polytopes, Third edition, Dover Publications, Inc., New York, 1973. |
[3] |
L. E. Dickson, Algebraic Theories, Dover Publications, Inc., New York, 1959. |
[4] |
P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst. Hautes Études Sci. Publ. Math., 63 (1986), 5-89. |
[5] |
A. Eskin, M. Konstevich and A. Zorich, Lyapunov spectrum of square-tiled cyclic covers, arXiv:1007.5330, 2011. |
[6] |
G. Forni and C. Matheus, An example of a Teichmüller disk in genus 4 with degenerate Kontsevich-Zorich spectrum, arXiv:0810.0023, 2008. |
[7] |
G. Forni, C. Matheus and A. Zorich, Square-tiled cyclic covers, J. Mod. Dyn., 5 (2011), 285-318.
doi: 10.3934/jmd.2011.5.285. |
[8] |
G. Forni, On the Lyapunov exponents of the Kontsevich-Zorich cocycle, in Handbook of Dynamical Systems (eds. B. Hasselblatt and A. Katok), 1B, Elsevier B. V., Amsterdam, Elsevier, 2006. |
[9] |
A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002. |
[10] |
F. Herrlich and G. Schmithüsen, An extraordinary origami curve, Math. Nachr., 281 (2008), 219-237.
doi: 10.1002/mana.200510597. |
[11] |
P. Hubert and G. Schmithüsen, Action of the affine group on cyclic covers,, in preparation., ().
|
[12] |
C. T. McMullen, Braid groups and Hodge theory, Math. Ann., 355 (2013), 893-946.
doi: 10.1007/s00208-012-0804-2. |
[13] |
C. Matheus and J.-C. Yoccoz, The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis, J. Mod. Dyn., 4 (2010), 453-486.
doi: 10.3934/jmd.2010.4.453. |
[14] |
G. Schmithüsen, An algorithm for finding the Veech group of an origami, Experimental Mathematics, 13 (2004), 459-472. |
[15] |
J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. |
[16] |
J. Smillie and B. Weiss, Examples of horocycle-invariant measures on the moduli space of translation, surfaces., ().
|
[17] |
W. P. Thurston, Shapes of polyhedra and triangulations of the sphere, in The Epstein Birthday Schrift, Geometry and Topology Monographs, 1, Geom. Topol. Publ., Coventry, 1998, 511-549.
doi: 10.2140/gtm.1998.1.511. |
[18] |
A. Wright, Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces, J. Mod. Dyn., 6 (2012), 405-426.
doi: 10.3934/jmd.2012.6.405. |
show all references
References:
[1] |
I. I. Bouw and M. Möller, Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. of Math. (2), 172 (2010), 139-185.
doi: 10.4007/annals.2010.172.139. |
[2] |
H. S. M. Coxeter, Regular Polytopes, Third edition, Dover Publications, Inc., New York, 1973. |
[3] |
L. E. Dickson, Algebraic Theories, Dover Publications, Inc., New York, 1959. |
[4] |
P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst. Hautes Études Sci. Publ. Math., 63 (1986), 5-89. |
[5] |
A. Eskin, M. Konstevich and A. Zorich, Lyapunov spectrum of square-tiled cyclic covers, arXiv:1007.5330, 2011. |
[6] |
G. Forni and C. Matheus, An example of a Teichmüller disk in genus 4 with degenerate Kontsevich-Zorich spectrum, arXiv:0810.0023, 2008. |
[7] |
G. Forni, C. Matheus and A. Zorich, Square-tiled cyclic covers, J. Mod. Dyn., 5 (2011), 285-318.
doi: 10.3934/jmd.2011.5.285. |
[8] |
G. Forni, On the Lyapunov exponents of the Kontsevich-Zorich cocycle, in Handbook of Dynamical Systems (eds. B. Hasselblatt and A. Katok), 1B, Elsevier B. V., Amsterdam, Elsevier, 2006. |
[9] |
A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002. |
[10] |
F. Herrlich and G. Schmithüsen, An extraordinary origami curve, Math. Nachr., 281 (2008), 219-237.
doi: 10.1002/mana.200510597. |
[11] |
P. Hubert and G. Schmithüsen, Action of the affine group on cyclic covers,, in preparation., ().
|
[12] |
C. T. McMullen, Braid groups and Hodge theory, Math. Ann., 355 (2013), 893-946.
doi: 10.1007/s00208-012-0804-2. |
[13] |
C. Matheus and J.-C. Yoccoz, The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis, J. Mod. Dyn., 4 (2010), 453-486.
doi: 10.3934/jmd.2010.4.453. |
[14] |
G. Schmithüsen, An algorithm for finding the Veech group of an origami, Experimental Mathematics, 13 (2004), 459-472. |
[15] |
J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. |
[16] |
J. Smillie and B. Weiss, Examples of horocycle-invariant measures on the moduli space of translation, surfaces., ().
|
[17] |
W. P. Thurston, Shapes of polyhedra and triangulations of the sphere, in The Epstein Birthday Schrift, Geometry and Topology Monographs, 1, Geom. Topol. Publ., Coventry, 1998, 511-549.
doi: 10.2140/gtm.1998.1.511. |
[18] |
A. Wright, Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces, J. Mod. Dyn., 6 (2012), 405-426.
doi: 10.3934/jmd.2012.6.405. |
[1] |
Alex Wright. Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces. Journal of Modern Dynamics, 2012, 6 (3) : 405-426. doi: 10.3934/jmd.2012.6.405 |
[2] |
Giovanni Forni, Carlos Matheus, Anton Zorich. Square-tiled cyclic covers. Journal of Modern Dynamics, 2011, 5 (2) : 285-318. doi: 10.3934/jmd.2011.5.285 |
[3] |
Alex Eskin, Maxim Kontsevich, Anton Zorich. Lyapunov spectrum of square-tiled cyclic covers. Journal of Modern Dynamics, 2011, 5 (2) : 319-353. doi: 10.3934/jmd.2011.5.319 |
[4] |
Sébastien Ferenczi, Pascal Hubert. Rigidity of square-tiled interval exchange transformations. Journal of Modern Dynamics, 2019, 14: 153-177. doi: 10.3934/jmd.2019006 |
[5] |
Dawei Chen. Strata of abelian differentials and the Teichmüller dynamics. Journal of Modern Dynamics, 2013, 7 (1) : 135-152. doi: 10.3934/jmd.2013.7.135 |
[6] |
Ursula Hamenstädt. Dynamics of the Teichmüller flow on compact invariant sets. Journal of Modern Dynamics, 2010, 4 (2) : 393-418. doi: 10.3934/jmd.2010.4.393 |
[7] |
Francisco Arana-Herrera. Counting square-tiled surfaces with prescribed real and imaginary foliations and connections to Mirzakhani's asymptotics for simple closed hyperbolic geodesics. Journal of Modern Dynamics, 2020, 16: 81-107. doi: 10.3934/jmd.2020004 |
[8] |
Martin Möller. Shimura and Teichmüller curves. Journal of Modern Dynamics, 2011, 5 (1) : 1-32. doi: 10.3934/jmd.2011.5.1 |
[9] |
Jeremy Kahn, Alex Wright. Hodge and Teichmüller. Journal of Modern Dynamics, 2022, 18: 149-160. doi: 10.3934/jmd.2022007 |
[10] |
Giovanni Forni. On the Brin Prize work of Artur Avila in Teichmüller dynamics and interval-exchange transformations. Journal of Modern Dynamics, 2012, 6 (2) : 139-182. doi: 10.3934/jmd.2012.6.139 |
[11] |
Giovanni Forni, Carlos Matheus. Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. Journal of Modern Dynamics, 2014, 8 (3&4) : 271-436. doi: 10.3934/jmd.2014.8.271 |
[12] |
Stefano Marmi. Some arithmetical aspects of renormalization in Teichmüller dynamics: On the occasion of Corinna Ulcigrai winning the Brin Prize. Journal of Modern Dynamics, 2022, 18: 131-147. doi: 10.3934/jmd.2022006 |
[13] |
Ursula Hamenstädt. Bowen's construction for the Teichmüller flow. Journal of Modern Dynamics, 2013, 7 (4) : 489-526. doi: 10.3934/jmd.2013.7.489 |
[14] |
Fei Yu, Kang Zuo. Weierstrass filtration on Teichmüller curves and Lyapunov exponents. Journal of Modern Dynamics, 2013, 7 (2) : 209-237. doi: 10.3934/jmd.2013.7.209 |
[15] |
David Aulicino, Chaya Norton. Shimura–Teichmüller curves in genus 5. Journal of Modern Dynamics, 2020, 16: 255-288. doi: 10.3934/jmd.2020009 |
[16] |
Guizhen Cui, Yunping Jiang, Anthony Quas. Scaling functions and Gibbs measures and Teichmüller spaces of circle endomorphisms. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 535-552. doi: 10.3934/dcds.1999.5.535 |
[17] |
Chi Po Choi, Xianfeng Gu, Lok Ming Lui. Subdivision connectivity remeshing via Teichmüller extremal map. Inverse Problems and Imaging, 2017, 11 (5) : 825-855. doi: 10.3934/ipi.2017039 |
[18] |
Matteo Costantini, André Kappes. The equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve. Journal of Modern Dynamics, 2017, 11: 17-41. doi: 10.3934/jmd.2017002 |
[19] |
Anna Lenzhen, Babak Modami, Kasra Rafi. Teichmüller geodesics with $ d$-dimensional limit sets. Journal of Modern Dynamics, 2018, 12: 261-283. doi: 10.3934/jmd.2018010 |
[20] |
Sébastien Guisset. Angular moments models for rarefied gas dynamics. Numerical comparisons with kinetic and Navier-Stokes equations. Kinetic and Related Models, 2020, 13 (4) : 739-758. doi: 10.3934/krm.2020025 |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]