-
Previous Article
A concise proof of the multiplicative ergodic theorem on Banach spaces
- JMD Home
- This Volume
-
Next Article
On the intersection of sectional-hyperbolic sets
Hofer's length spectrum of symplectic surfaces
1. | Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, IL 60637, United States |
References:
[1] |
A. Banyaga, The Structure of Classical Diffeomorphism Groups, Mathematics and Its Applications, 400, Springer-Verlag, 1997.
doi: 10.1007/978-1-4757-6800-8. |
[2] |
P. Biran, M. Entov and L. Polterovich, Calabi quasimorphisms for the symplectic ball, Commun. Contemp. Math., 6 (2004), 793-802.
doi: 10.1142/S0219199704001525. |
[3] |
D. Calegari, Word length in surface groups with characteristic generating sets, Proc. Amer. Math. Soc., 136 (2008), 2631-2637.
doi: 10.1090/S0002-9939-08-09443-4. |
[4] |
M. Entov and L. Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res. Not., 2003 (2003), 1635-1676.
doi: 10.1155/S1073792803210011. |
[5] |
M. Entov, L. Polterovich, P. Py and M. Khanevsky, On continuity of quasimorphisms for symplectic maps, in Perspectives in Analysis, Geometry, and Topology, Progress in Mathematics, 296, Birkhäuser, Boston, 2012.
doi: 10.1007/978-0-8176-8277-4_8. |
[6] |
B. Farb and D. Margalit, A Primer on Mapping Class Groups, Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 2011.
doi: 10.1515/9781400839049. |
[7] |
M. Khanevsky, Hofer's norm and disk translations in an annulus, preprint, arXiv:1111.1923. |
[8] |
M. Khanevsky, Geometric and Topological Aspects of Lagrangian Submanifolds - Intersections, Diameter and Floer Theory, Ph.D. thesis, Tel Aviv University, 2011. |
[9] |
F. Lalonde and D. McDuff, Hofer's $l^\infty$-geometry: Energy and stability of Hamiltonian flows. Part II, Invent. Math., 122 (1995), 35-69. |
[10] |
J.-P. Otal, Le spectre marqué des longueurs des surfaces á courbure négative, Ann. Math. (2), 131 (1990), 151-162.
doi: 10.2307/1971511. |
[11] |
F. Le Roux, Six questions, a proposition and two pictures on Hofer distance for Hamiltonian diffeomorphisms on surfaces, in Symplectic Topology and Measure Preserving Dynamical Systems (eds. Y.-G. Oh, A. Fathi and C. Viterbo), Contemporary Mathematics, 512, Amer. Math. Soc., Providence, RI, 2010, 33-40. |
show all references
References:
[1] |
A. Banyaga, The Structure of Classical Diffeomorphism Groups, Mathematics and Its Applications, 400, Springer-Verlag, 1997.
doi: 10.1007/978-1-4757-6800-8. |
[2] |
P. Biran, M. Entov and L. Polterovich, Calabi quasimorphisms for the symplectic ball, Commun. Contemp. Math., 6 (2004), 793-802.
doi: 10.1142/S0219199704001525. |
[3] |
D. Calegari, Word length in surface groups with characteristic generating sets, Proc. Amer. Math. Soc., 136 (2008), 2631-2637.
doi: 10.1090/S0002-9939-08-09443-4. |
[4] |
M. Entov and L. Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res. Not., 2003 (2003), 1635-1676.
doi: 10.1155/S1073792803210011. |
[5] |
M. Entov, L. Polterovich, P. Py and M. Khanevsky, On continuity of quasimorphisms for symplectic maps, in Perspectives in Analysis, Geometry, and Topology, Progress in Mathematics, 296, Birkhäuser, Boston, 2012.
doi: 10.1007/978-0-8176-8277-4_8. |
[6] |
B. Farb and D. Margalit, A Primer on Mapping Class Groups, Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 2011.
doi: 10.1515/9781400839049. |
[7] |
M. Khanevsky, Hofer's norm and disk translations in an annulus, preprint, arXiv:1111.1923. |
[8] |
M. Khanevsky, Geometric and Topological Aspects of Lagrangian Submanifolds - Intersections, Diameter and Floer Theory, Ph.D. thesis, Tel Aviv University, 2011. |
[9] |
F. Lalonde and D. McDuff, Hofer's $l^\infty$-geometry: Energy and stability of Hamiltonian flows. Part II, Invent. Math., 122 (1995), 35-69. |
[10] |
J.-P. Otal, Le spectre marqué des longueurs des surfaces á courbure négative, Ann. Math. (2), 131 (1990), 151-162.
doi: 10.2307/1971511. |
[11] |
F. Le Roux, Six questions, a proposition and two pictures on Hofer distance for Hamiltonian diffeomorphisms on surfaces, in Symplectic Topology and Measure Preserving Dynamical Systems (eds. Y.-G. Oh, A. Fathi and C. Viterbo), Contemporary Mathematics, 512, Amer. Math. Soc., Providence, RI, 2010, 33-40. |
[1] |
François Ledrappier. Erratum: On Omri Sarig's work on the dynamics of surfaces. Journal of Modern Dynamics, 2015, 9: 355-355. doi: 10.3934/jmd.2015.9.355 |
[2] |
François Ledrappier. On Omri Sarig's work on the dynamics on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 15-24. doi: 10.3934/jmd.2014.8.15 |
[3] |
Jaeyoo Choy, Hahng-Yun Chu. On the dynamics of flows on compact metric spaces. Communications on Pure and Applied Analysis, 2010, 9 (1) : 103-108. doi: 10.3934/cpaa.2010.9.103 |
[4] |
Seung Won Kim, P. Christopher Staecker. Dynamics of random selfmaps of surfaces with boundary. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 599-611. doi: 10.3934/dcds.2014.34.599 |
[5] |
François Lalonde, Yasha Savelyev. On the injectivity radius in Hofer's geometry. Electronic Research Announcements, 2014, 21: 177-185. doi: 10.3934/era.2014.21.177 |
[6] |
Dmitry Dolgopyat, Dmitry Jakobson. On small gaps in the length spectrum. Journal of Modern Dynamics, 2016, 10: 339-352. doi: 10.3934/jmd.2016.10.339 |
[7] |
Emmanuel Schenck. Exponential gaps in the length spectrum. Journal of Modern Dynamics, 2020, 16: 207-223. doi: 10.3934/jmd.2020007 |
[8] |
Frédéric Naud. Birkhoff cones, symbolic dynamics and spectrum of transfer operators. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 581-598. doi: 10.3934/dcds.2004.11.581 |
[9] |
Răzvan M. Tudoran, Anania Gîrban. On the Hamiltonian dynamics and geometry of the Rabinovich system. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 789-823. doi: 10.3934/dcdsb.2011.15.789 |
[10] |
Gideon Simpson, Michael I. Weinstein, Philip Rosenau. On a Hamiltonian PDE arising in magma dynamics. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 903-924. doi: 10.3934/dcdsb.2008.10.903 |
[11] |
Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437-497. doi: 10.3934/jmd.2014.8.437 |
[12] |
Saul Mendoza-Palacios, Onésimo Hernández-Lerma. Stability of the replicator dynamics for games in metric spaces. Journal of Dynamics and Games, 2017, 4 (4) : 319-333. doi: 10.3934/jdg.2017017 |
[13] |
Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581 |
[14] |
Ely Kerman. Displacement energy of coisotropic submanifolds and Hofer's geometry. Journal of Modern Dynamics, 2008, 2 (3) : 471-497. doi: 10.3934/jmd.2008.2.471 |
[15] |
Anton Petrunin. Correction to: Metric minimizing surfaces. Electronic Research Announcements, 2018, 25: 96-96. doi: 10.3934/era.2018.25.010 |
[16] |
Anton Petrunin. Metric minimizing surfaces. Electronic Research Announcements, 1999, 5: 47-54. |
[17] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3295-3317. doi: 10.3934/dcds.2020406 |
[18] |
Janusz Grabowski, Katarzyna Grabowska, Paweł Urbański. Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings. Journal of Geometric Mechanics, 2014, 6 (4) : 503-526. doi: 10.3934/jgm.2014.6.503 |
[19] |
Guillermo Dávila-Rascón, Yuri Vorobiev. Hamiltonian structures for projectable dynamics on symplectic fiber bundles. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1077-1088. doi: 10.3934/dcds.2013.33.1077 |
[20] |
Hartmut Schwetlick, Daniel C. Sutton, Johannes Zimmer. Effective Hamiltonian dynamics via the Maupertuis principle. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1395-1410. doi: 10.3934/dcdss.2020078 |
2021 Impact Factor: 0.641
Tools
Metrics
Other articles
by authors
[Back to Top]