Advanced Search
Article Contents
Article Contents

A concise proof of the multiplicative ergodic theorem on Banach spaces

Abstract Related Papers Cited by
  • We give a new proof of a multiplicative ergodic theorem for quasi-compact operators on Banach spaces with a separable dual. Our proof works by constructing the finite-codimensional `slow' subspaces (those where the growth rate is dominated by some $\lambda_i$), in contrast with earlier infinite-dimensional multiplicative ergodic theorems which work by constructing the finite-dimensional fast subspaces. As an important consequence for applications, we are able to get rid of the injectivity requirements that appear in earlier works.
    Mathematics Subject Classification: Primary: 37H15; Secondary: 37L55.


    \begin{equation} \\ \end{equation}
  • [1]

    A. Blumenthal, A volume-based approach to the multiplicative ergodic theorem on Banach spaces, arXiv:1502.06554.


    T. S. Doan, Lyapunov Exponents for Random Dynamical Systems, PhD thesis, Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden, 2009.


    G. Froyland, S. Lloyd and A. Quas, Coherent structures and isolated spectrum for Perron-Frobenius cocycles, Ergodic Theory Dynam. Systems, 30 (2010), 729-756.doi: 10.1017/S0143385709000339.


    C. González-Tokman and A. Quas, A semi-invertible operator Oseledets theorem, Ergodic Theory Dynam. Systems, 34 (2014), 1230-1272.doi: 10.1017/etds.2012.189.


    T. Kato, Perturbation theory for linear operators, Reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.


    Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space, Mem. Amer. Math. Soc., 206 (2010), vi+106 pp.doi: 10.1090/S0065-9266-10-00574-0.


    R. Mañé, Lyapounov exponents and stable manifolds for compact transformations, in Geometric Dynamics (Rio de Janeiro, 1981), Lecture Notes in Math., 1007, Springer, Berlin, 1983, 522-577.doi: 10.1007/BFb0061433.


    V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov exponents of dynamical systems, Trudy Moskov. Mat. Obšč., 19 (1968), 179-210.


    G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Mathematics, No. 94, Cambridge University Press, Cambridge, 1989.doi: 10.1017/CBO9780511662454.


    M. S. Raghunathan, A proof of Oseledec's multiplicative ergodic theorem, Israel J. Math., 32 (1979), 356-362.doi: 10.1007/BF02760464.


    D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space, Ann. of Math. (2), 115 (1982), 243-290.doi: 10.2307/1971392.


    P. Thieullen, Fibrés dynamiques asymptotiquement compacts. Exposants de Lyapounov. Entropie. Dimension, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 49-97.


    P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics, 25, Cambridge University Press, Cambridge, 1991.doi: 10.1017/CBO9780511608735.

  • 加载中

Article Metrics

HTML views() PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint