2015, 9: 25-49. doi: 10.3934/jmd.2015.9.25

On the rigidity of Weyl chamber flows and Schur multipliers as topological groups

1. 

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, United States

Received  June 2014 Revised  November 2014 Published  May 2015

We effectively conclude the local rigidity program for generic restrictions of partially hyperbolic Weyl chamber flows. Our methods replace and extend previous ones by circumventing computations made in Schur multipliers. Instead, we construct a natural topology on $H_2(G,\mathbb{Z})$, and rely on classical Lie structure theory for central extensions.
Citation: Kurt Vinhage. On the rigidity of Weyl chamber flows and Schur multipliers as topological groups. Journal of Modern Dynamics, 2015, 9: 25-49. doi: 10.3934/jmd.2015.9.25
References:
[1]

D. Damjanović, Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions, J. Mod. Dyn., 1 (2007), 665-688. doi: 10.3934/jmd.2007.1.665.  Google Scholar

[2]

D. Damjanović and A. Katok, Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic $\mathbbR^k$ actions, Discrete Contin. Dyn. Syst., 13 (2005), 985-1005. doi: 10.3934/dcds.2005.13.985.  Google Scholar

[3]

D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions I. KAM method and $\mathbbZ^k$ actions on the torus, Ann. of Math. (2), 172 (2010), 1805-1858. doi: 10.4007/annals.2010.172.1805.  Google Scholar

[4]

D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions. II: The geometric method and restrictions of Weyl chamber flows on $SL$$(n,\mathbbR)$$/$$\Gamma$, Int. Math. Res. Not. IMRN, (2011), 4405-4430. doi: 10.1093/imrn/rnq252.  Google Scholar

[5]

V. V. Deodhar, On central extensions of rational points of algebraic groups, Amer. J. Math., 100 (1978), 303-386. doi: 10.2307/2373853.  Google Scholar

[6]

J. L. Dupont, W. Parry and C.-H. Sah, Homology of classical Lie groups made discrete. II. $H_2,H_3,$ and relations with scissors congruences, J. Algebra, 113 (1988), 215-260. doi: 10.1016/0021-8693(88)90191-3.  Google Scholar

[7]

A. M. Gleason and R. S. Palais, On a class of transformation groups, Amer. J. Math., 79 (1957), 631-648. doi: 10.2307/2372567.  Google Scholar

[8]

M. Grayson, C. Pugh and M. Shub, Stably ergodic diffeomorphisms, Ann. of Math. (2), 140 (1994), 295-329. doi: 10.2307/2118602.  Google Scholar

[9]

R. Hartshorne, ed., Algebraic Geometry, Corrected reprint of the 1975 original, Proceedings of Symposia in Pure Mathematics, Vol. 29, American Mathematical Society, Providence, R.I., 1979.  Google Scholar

[10]

A. Katok and R. J. Spatzier, Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Tr. Mat. Inst. Steklova, 216 (1997), Din. Sist. i Smezhnye Vopr., 292-319.  Google Scholar

[11]

A. Katok, V. Niţică and A. Török, Non-abelian cohomology of abelian Anosov actions, Ergodic Theory Dynam. Systems, 20 (2000), 259-288. doi: 10.1017/S0143385700000122.  Google Scholar

[12]

G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 17, Springer-Verlag, Berlin, 1991.  Google Scholar

[13]

J. Milnor, Introduction to Algebraic $K$-Theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971.  Google Scholar

[14]

S. A. Morris, Free products of topological groups, Bull. Austral. Math. Soc., 4 (1971), 17-29. doi: 10.1017/S0004972700046219.  Google Scholar

[15]

E. T. Ordman, Free products of topological groups which are $k_{\omega }$-spaces, Trans. Amer. Math. Soc., 191 (1974), 61-73.  Google Scholar

[16]

C. Pugh and M. Shub, Stably ergodic dynamical systems and partial hyperbolicity, J. Complexity, 13 (1997), 125-179. doi: 10.1006/jcom.1997.0437.  Google Scholar

[17]

C. Pugh, M. Shub and A. Wilkinson, Hölder foliations, revisited, J. Mod. Dyn., 6 (2012), 79-120. doi: 10.3934/jmd.2012.6.79.  Google Scholar

[18]

C. H. Sah and J. B. Wagoner, Second homology of Lie groups made discrete, Comm. Algebra, 5 (1977), 611-642. doi: 10.1080/00927877708822184.  Google Scholar

[19]

Z. Wang, Local rigidity of partially hyperbolic actions: Twisted symmetric space examples,, preprint., ().   Google Scholar

[20]

Z. J. Wang, Local rigidity of partially hyperbolic actions, J. Mod. Dyn., 4 (2010), 271-327. doi: 10.3934/jmd.2010.4.271.  Google Scholar

[21]

Z. J. Wang, New cases of differentiable rigidity for partially hyperbolic actions: Symplectic groups and resonance directions, J. Mod. Dyn., 4 (2010), 585-608. doi: 10.3934/jmd.2010.4.585.  Google Scholar

show all references

References:
[1]

D. Damjanović, Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions, J. Mod. Dyn., 1 (2007), 665-688. doi: 10.3934/jmd.2007.1.665.  Google Scholar

[2]

D. Damjanović and A. Katok, Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic $\mathbbR^k$ actions, Discrete Contin. Dyn. Syst., 13 (2005), 985-1005. doi: 10.3934/dcds.2005.13.985.  Google Scholar

[3]

D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions I. KAM method and $\mathbbZ^k$ actions on the torus, Ann. of Math. (2), 172 (2010), 1805-1858. doi: 10.4007/annals.2010.172.1805.  Google Scholar

[4]

D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions. II: The geometric method and restrictions of Weyl chamber flows on $SL$$(n,\mathbbR)$$/$$\Gamma$, Int. Math. Res. Not. IMRN, (2011), 4405-4430. doi: 10.1093/imrn/rnq252.  Google Scholar

[5]

V. V. Deodhar, On central extensions of rational points of algebraic groups, Amer. J. Math., 100 (1978), 303-386. doi: 10.2307/2373853.  Google Scholar

[6]

J. L. Dupont, W. Parry and C.-H. Sah, Homology of classical Lie groups made discrete. II. $H_2,H_3,$ and relations with scissors congruences, J. Algebra, 113 (1988), 215-260. doi: 10.1016/0021-8693(88)90191-3.  Google Scholar

[7]

A. M. Gleason and R. S. Palais, On a class of transformation groups, Amer. J. Math., 79 (1957), 631-648. doi: 10.2307/2372567.  Google Scholar

[8]

M. Grayson, C. Pugh and M. Shub, Stably ergodic diffeomorphisms, Ann. of Math. (2), 140 (1994), 295-329. doi: 10.2307/2118602.  Google Scholar

[9]

R. Hartshorne, ed., Algebraic Geometry, Corrected reprint of the 1975 original, Proceedings of Symposia in Pure Mathematics, Vol. 29, American Mathematical Society, Providence, R.I., 1979.  Google Scholar

[10]

A. Katok and R. J. Spatzier, Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Tr. Mat. Inst. Steklova, 216 (1997), Din. Sist. i Smezhnye Vopr., 292-319.  Google Scholar

[11]

A. Katok, V. Niţică and A. Török, Non-abelian cohomology of abelian Anosov actions, Ergodic Theory Dynam. Systems, 20 (2000), 259-288. doi: 10.1017/S0143385700000122.  Google Scholar

[12]

G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 17, Springer-Verlag, Berlin, 1991.  Google Scholar

[13]

J. Milnor, Introduction to Algebraic $K$-Theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971.  Google Scholar

[14]

S. A. Morris, Free products of topological groups, Bull. Austral. Math. Soc., 4 (1971), 17-29. doi: 10.1017/S0004972700046219.  Google Scholar

[15]

E. T. Ordman, Free products of topological groups which are $k_{\omega }$-spaces, Trans. Amer. Math. Soc., 191 (1974), 61-73.  Google Scholar

[16]

C. Pugh and M. Shub, Stably ergodic dynamical systems and partial hyperbolicity, J. Complexity, 13 (1997), 125-179. doi: 10.1006/jcom.1997.0437.  Google Scholar

[17]

C. Pugh, M. Shub and A. Wilkinson, Hölder foliations, revisited, J. Mod. Dyn., 6 (2012), 79-120. doi: 10.3934/jmd.2012.6.79.  Google Scholar

[18]

C. H. Sah and J. B. Wagoner, Second homology of Lie groups made discrete, Comm. Algebra, 5 (1977), 611-642. doi: 10.1080/00927877708822184.  Google Scholar

[19]

Z. Wang, Local rigidity of partially hyperbolic actions: Twisted symmetric space examples,, preprint., ().   Google Scholar

[20]

Z. J. Wang, Local rigidity of partially hyperbolic actions, J. Mod. Dyn., 4 (2010), 271-327. doi: 10.3934/jmd.2010.4.271.  Google Scholar

[21]

Z. J. Wang, New cases of differentiable rigidity for partially hyperbolic actions: Symplectic groups and resonance directions, J. Mod. Dyn., 4 (2010), 585-608. doi: 10.3934/jmd.2010.4.585.  Google Scholar

[1]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[2]

Danijela Damjanovic, Anatole Katok. Local rigidity of homogeneous parabolic actions: I. A model case. Journal of Modern Dynamics, 2011, 5 (2) : 203-235. doi: 10.3934/jmd.2011.5.203

[3]

Woochul Jung, Keonhee Lee, Carlos Morales, Jumi Oh. Rigidity of random group actions. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6845-6854. doi: 10.3934/dcds.2020130

[4]

Masayuki Asaoka. Local rigidity of homogeneous actions of parabolic subgroups of rank-one Lie groups. Journal of Modern Dynamics, 2015, 9: 191-201. doi: 10.3934/jmd.2015.9.191

[5]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Journal of Modern Dynamics, 2010, 4 (2) : 271-327. doi: 10.3934/jmd.2010.4.271

[6]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Electronic Research Announcements, 2010, 17: 68-79. doi: 10.3934/era.2010.17.68

[7]

A. Katok and R. J. Spatzier. Nonstationary normal forms and rigidity of group actions. Electronic Research Announcements, 1996, 2: 124-133.

[8]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[9]

Xuanji Hou, Lei Jiao. On local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete & Continuous Dynamical Systems, 2016, 36 (6) : 3125-3152. doi: 10.3934/dcds.2016.36.3125

[10]

Xuanji Hou, Jiangong You. Local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete & Continuous Dynamical Systems, 2009, 24 (2) : 441-454. doi: 10.3934/dcds.2009.24.441

[11]

Danijela Damjanovic and Anatole Katok. Local rigidity of actions of higher rank abelian groups and KAM method. Electronic Research Announcements, 2004, 10: 142-154.

[12]

Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207

[13]

A. Kononenko. Twisted cocycles and rigidity problems. Electronic Research Announcements, 1995, 1: 26-34.

[14]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[15]

Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901

[16]

Kesong Yan, Qian Liu, Fanping Zeng. Classification of transitive group actions. Discrete & Continuous Dynamical Systems, 2021, 41 (12) : 5579-5607. doi: 10.3934/dcds.2021089

[17]

Bassam Fayad, Raphaël Krikorian. Rigidity results for quasiperiodic SL(2, R)-cocycles. Journal of Modern Dynamics, 2009, 3 (4) : 479-510. doi: 10.3934/jmd.2009.3.479

[18]

Nikolaos Karaliolios. Differentiable Rigidity for quasiperiodic cocycles in compact Lie groups. Journal of Modern Dynamics, 2017, 11: 125-142. doi: 10.3934/jmd.2017006

[19]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012

[20]

Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Partial hyperbolicity and ergodicity in dimension three. Journal of Modern Dynamics, 2008, 2 (2) : 187-208. doi: 10.3934/jmd.2008.2.187

2020 Impact Factor: 0.848

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]