2015, 9: 355-355. doi: 10.3934/jmd.2015.9.355

Erratum: On Omri Sarig's work on the dynamics of surfaces

1. 

Department of Mathematics, University of Notre Dame, IN 46556-4618, USA and LPMA, Boîte Courrier 188, 4, Place Jussieu, 75252 PARIS cedex 05, France

Received  October 2015 Published  November 2015

N/A
Citation: François Ledrappier. Erratum: On Omri Sarig's work on the dynamics of surfaces. Journal of Modern Dynamics, 2015, 9: 355-355. doi: 10.3934/jmd.2015.9.355
References:
[1]

B. M. Gurevich and S. V. Savchenko, Thermodynamic formalism for symbolic Markov chains with a countable number of states, Russian Math. Surveys, 53 (1998), 245-344. doi: 10.1070/rm1998v053n02ABEH000017.

[2]

F. Ledrappier, On Omri Sarig's work on the dynamics of surfaces, J. Modern Dynamics, 8 (2014), 15-24. doi: 10.3934/jmd.2014.8.15.

[3]

S. V. Savchenko, Zeta function and Gibbs measures, Russian Math. Surveys, 48 (1993), 189-190. doi: 10.1070/RM1993v048n01ABEH001001.

[4]

S. V. Savchenko, Periodic points of countable Markov chains, Sb. Math., 186 (1995), 1493-1529. doi: 10.1070/SM1995v186n10ABEH000081.

show all references

References:
[1]

B. M. Gurevich and S. V. Savchenko, Thermodynamic formalism for symbolic Markov chains with a countable number of states, Russian Math. Surveys, 53 (1998), 245-344. doi: 10.1070/rm1998v053n02ABEH000017.

[2]

F. Ledrappier, On Omri Sarig's work on the dynamics of surfaces, J. Modern Dynamics, 8 (2014), 15-24. doi: 10.3934/jmd.2014.8.15.

[3]

S. V. Savchenko, Zeta function and Gibbs measures, Russian Math. Surveys, 48 (1993), 189-190. doi: 10.1070/RM1993v048n01ABEH001001.

[4]

S. V. Savchenko, Periodic points of countable Markov chains, Sb. Math., 186 (1995), 1493-1529. doi: 10.1070/SM1995v186n10ABEH000081.

[1]

Michael Jakobson, Lucia D. Simonelli. Countable Markov partitions suitable for thermodynamic formalism. Journal of Modern Dynamics, 2018, 13: 199-219. doi: 10.3934/jmd.2018018

[2]

Yair Daon. Bernoullicity of equilibrium measures on countable Markov shifts. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4003-4015. doi: 10.3934/dcds.2013.33.4003

[3]

Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Thermodynamic formalism for random countable Markov shifts. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 131-164. doi: 10.3934/dcds.2008.22.131

[4]

Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Corrigendum to: Thermodynamic formalism for random countable Markov shifts. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 593-594. doi: 10.3934/dcds.2015.35.593

[5]

Yakov Pesin. On the work of Sarig on countable Markov chains and thermodynamic formalism. Journal of Modern Dynamics, 2014, 8 (1) : 1-14. doi: 10.3934/jmd.2014.8.1

[6]

Mark F. Demers, Christopher J. Ianzano, Philip Mayer, Peter Morfe, Elizabeth C. Yoo. Limiting distributions for countable state topological Markov chains with holes. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 105-130. doi: 10.3934/dcds.2017005

[7]

Ana Cristina Mereu, Marco Antonio Teixeira. Reversibility and branching of periodic orbits. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1177-1199. doi: 10.3934/dcds.2013.33.1177

[8]

Ilie Ugarcovici. On hyperbolic measures and periodic orbits. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 505-512. doi: 10.3934/dcds.2006.16.505

[9]

Katrin Gelfert, Christian Wolf. On the distribution of periodic orbits. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 949-966. doi: 10.3934/dcds.2010.26.949

[10]

Jacky Cresson, Christophe Guillet. Periodic orbits and Arnold diffusion. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 451-470. doi: 10.3934/dcds.2003.9.451

[11]

Alain Jacquemard, Weber Flávio Pereira. On periodic orbits of polynomial relay systems. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 331-347. doi: 10.3934/dcds.2007.17.331

[12]

Peter Albers, Jean Gutt, Doris Hein. Periodic Reeb orbits on prequantization bundles. Journal of Modern Dynamics, 2018, 12: 123-150. doi: 10.3934/jmd.2018005

[13]

Jan Sieber, Matthias Wolfrum, Mark Lichtner, Serhiy Yanchuk. On the stability of periodic orbits in delay equations with large delay. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3109-3134. doi: 10.3934/dcds.2013.33.3109

[14]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[15]

Jorge Rebaza. Bifurcations and periodic orbits in variable population interactions. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2997-3012. doi: 10.3934/cpaa.2013.12.2997

[16]

Răzvan M. Tudoran. On the control of stability of periodic orbits of completely integrable systems. Journal of Geometric Mechanics, 2015, 7 (1) : 109-124. doi: 10.3934/jgm.2015.7.109

[17]

Corey Shanbrom. Periodic orbits in the Kepler-Heisenberg problem. Journal of Geometric Mechanics, 2014, 6 (2) : 261-278. doi: 10.3934/jgm.2014.6.261

[18]

Luca Dieci, Timo Eirola, Cinzia Elia. Periodic orbits of planar discontinuous system under discretization. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2743-2762. doi: 10.3934/dcdsb.2018103

[19]

Rossella Bartolo. Periodic orbits on Riemannian manifolds with convex boundary. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 439-450. doi: 10.3934/dcds.1997.3.439

[20]

Piotr Oprocha, Xinxing Wu. On averaged tracing of periodic average pseudo orbits. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4943-4957. doi: 10.3934/dcds.2017212

2021 Impact Factor: 0.641

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]