-
Previous Article
Effective equidistribution of translates of maximal horospherical measures in the space of lattices
- JMD Home
- This Volume
-
Next Article
On the work of Rodriguez Hertz on rigidity in dynamics
Minimality of the Ehrenfest wind-tree model
1. | Aix Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France, France |
References:
[1] |
A. Avila and P. Hubert, Recurrence for the Wind-Tree Model,, Annales de l'Institut Henri Poincaré - Analyse non linéaire, (). Google Scholar |
[2] |
Proc. Cambridge Philos. Soc., 47 (1951), 38-45.
doi: 10.1017/S0305004100026347. |
[3] |
Chaos, 19 (2009), 013121, 10pp.
doi: 10.1063/1.3085954. |
[4] |
Trans. Am. Math. Soc., 350 (1998), 3523-3535.
doi: 10.1090/S0002-9947-98-02089-3. |
[5] |
J. Mod. Dyn., 7 (2013), 1-29.
doi: 10.3934/jmd.2013.7.1. |
[6] |
Ann. Sci. ENS, 47 (2014), 1085-1110. |
[7] |
Nature, 401 (1999), p875.
doi: 10.1038/44759. |
[8] |
Encykl. d. Math. Wissensch. IV 2 II, Heft 6, 90 S (1912) (in German, translated in:) The conceptual foundations of the statistical approach in mechanics, (trans. Moravicsik, M. J.), 10-13 Cornell University Press, Itacha NY (1959). Google Scholar |
[9] |
Invent. Math., 197 (2014), 241-298.
doi: 10.1007/s00222-013-0482-z. |
[10] |
Phys. Rev., 185 (1969), 308-322.
doi: 10.1103/PhysRev.185.308. |
[11] |
Bull. AMS, 50 (1944), 915-919.
doi: 10.1090/S0002-9904-1944-08262-1. |
[12] |
J. Math. Phys., 21 (1980), 1802-1808.
doi: 10.1063/1.524633. |
[13] |
J. Math. Phys., 10 (1969), 397-414. Google Scholar |
[14] |
Compos. Math., 149 (2013), 1364-1380.
doi: 10.1112/S0010437X12000887. |
[15] |
Discrete Contin. Dyn. Syst., 33 (2013), 4341-4347.
doi: 10.3934/dcds.2013.33.4341. |
[16] |
J. Reine Angew. Math., 656 (2011), 223-244.
doi: 10.1515/CRELLE.2011.052. |
[17] |
Math. Notes, 18 (1975), 291-300. |
[18] |
Math. Z., 141 (1975), 25-31.
doi: 10.1007/BF01236981. |
[19] |
Thèse Paris 11, 2014. Google Scholar |
[20] |
J. AMS, 18 (2005), 823-872.
doi: 10.1090/S0894-0347-05-00490-X. |
[21] |
Handbook of dynamical systems, North-Holland, Amsterdam, 1 (2002), 1015-1089.
doi: 10.1016/S1874-575X(02)80015-7. |
[22] |
J. Mod. Dyn., 6 (2012), 477-497. |
[23] |
Dynamical systems and Diophantine approximation, 173-185, Semin. Congr., 19, Soc. Math. France, Paris, 2009. |
[24] |
J. Stat. Phys., 141 (2010), 60-67.
doi: 10.1007/s10955-010-0026-5. |
[25] |
Inventiones Mathematicae, 97 (1989), 553-583.
doi: 10.1007/BF01388890. |
[26] |
Algebraic and topological dynamics, 205-258, Contemp. Math., 385, Amer. Math. Soc., Providence, RI, 2005
doi: 10.1090/conm/385/07199. |
[27] |
Physics Letters A, 39 (1972), 397-398.
doi: 10.1016/0375-9601(72)90112-0. |
[28] |
J. Comp. Physics, 7 (1971), 528-546.
doi: 10.1016/0021-9991(71)90109-4. |
show all references
References:
[1] |
A. Avila and P. Hubert, Recurrence for the Wind-Tree Model,, Annales de l'Institut Henri Poincaré - Analyse non linéaire, (). Google Scholar |
[2] |
Proc. Cambridge Philos. Soc., 47 (1951), 38-45.
doi: 10.1017/S0305004100026347. |
[3] |
Chaos, 19 (2009), 013121, 10pp.
doi: 10.1063/1.3085954. |
[4] |
Trans. Am. Math. Soc., 350 (1998), 3523-3535.
doi: 10.1090/S0002-9947-98-02089-3. |
[5] |
J. Mod. Dyn., 7 (2013), 1-29.
doi: 10.3934/jmd.2013.7.1. |
[6] |
Ann. Sci. ENS, 47 (2014), 1085-1110. |
[7] |
Nature, 401 (1999), p875.
doi: 10.1038/44759. |
[8] |
Encykl. d. Math. Wissensch. IV 2 II, Heft 6, 90 S (1912) (in German, translated in:) The conceptual foundations of the statistical approach in mechanics, (trans. Moravicsik, M. J.), 10-13 Cornell University Press, Itacha NY (1959). Google Scholar |
[9] |
Invent. Math., 197 (2014), 241-298.
doi: 10.1007/s00222-013-0482-z. |
[10] |
Phys. Rev., 185 (1969), 308-322.
doi: 10.1103/PhysRev.185.308. |
[11] |
Bull. AMS, 50 (1944), 915-919.
doi: 10.1090/S0002-9904-1944-08262-1. |
[12] |
J. Math. Phys., 21 (1980), 1802-1808.
doi: 10.1063/1.524633. |
[13] |
J. Math. Phys., 10 (1969), 397-414. Google Scholar |
[14] |
Compos. Math., 149 (2013), 1364-1380.
doi: 10.1112/S0010437X12000887. |
[15] |
Discrete Contin. Dyn. Syst., 33 (2013), 4341-4347.
doi: 10.3934/dcds.2013.33.4341. |
[16] |
J. Reine Angew. Math., 656 (2011), 223-244.
doi: 10.1515/CRELLE.2011.052. |
[17] |
Math. Notes, 18 (1975), 291-300. |
[18] |
Math. Z., 141 (1975), 25-31.
doi: 10.1007/BF01236981. |
[19] |
Thèse Paris 11, 2014. Google Scholar |
[20] |
J. AMS, 18 (2005), 823-872.
doi: 10.1090/S0894-0347-05-00490-X. |
[21] |
Handbook of dynamical systems, North-Holland, Amsterdam, 1 (2002), 1015-1089.
doi: 10.1016/S1874-575X(02)80015-7. |
[22] |
J. Mod. Dyn., 6 (2012), 477-497. |
[23] |
Dynamical systems and Diophantine approximation, 173-185, Semin. Congr., 19, Soc. Math. France, Paris, 2009. |
[24] |
J. Stat. Phys., 141 (2010), 60-67.
doi: 10.1007/s10955-010-0026-5. |
[25] |
Inventiones Mathematicae, 97 (1989), 553-583.
doi: 10.1007/BF01388890. |
[26] |
Algebraic and topological dynamics, 205-258, Contemp. Math., 385, Amer. Math. Soc., Providence, RI, 2005
doi: 10.1090/conm/385/07199. |
[27] |
Physics Letters A, 39 (1972), 397-398.
doi: 10.1016/0375-9601(72)90112-0. |
[28] |
J. Comp. Physics, 7 (1971), 528-546.
doi: 10.1016/0021-9991(71)90109-4. |
[1] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015 |
[2] |
Nikolai Botkin, Varvara Turova, Barzin Hosseini, Johannes Diepolder, Florian Holzapfel. Tracking aircraft trajectories in the presence of wind disturbances. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021010 |
[3] |
Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023 |
[4] |
V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153 |
[5] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[6] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[7] |
Xianbang Chen, Yang Liu, Bin Li. Adjustable robust optimization in enabling optimal day-ahead economic dispatch of CCHP-MG considering uncertainties of wind-solar power and electric vehicle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1639-1661. doi: 10.3934/jimo.2020038 |
[8] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[9] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[10] |
Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026 |
[11] |
Feng-Bin Wang, Xueying Wang. A general multipatch cholera model in periodic environments. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021105 |
[12] |
Jia Li, Junxiang Xu. On the reducibility of a class of almost periodic Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3905-3919. doi: 10.3934/dcdsb.2020268 |
[13] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[14] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[15] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[16] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[17] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[18] |
Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211 |
[19] |
Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216 |
[20] |
Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060 |
2019 Impact Factor: 0.465
Tools
Metrics
Other articles
by authors
[Back to Top]