2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

Minimality of the Ehrenfest wind-tree model

1. 

Aix Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France, France

Received  June 2015 Revised  March 2016 Published  June 2016

We consider aperiodic wind-tree models and show that for a generic (in the sense of Baire) configuration the wind-tree dynamics is minimal in almost all directions and has a dense set of periodic points.
Citation: Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209
References:
[1]

A. Avila and P. Hubert, Recurrence for the Wind-Tree Model,, Annales de l'Institut Henri Poincaré - Analyse non linéaire, ().   Google Scholar

[2]

Proc. Cambridge Philos. Soc., 47 (1951), 38-45. doi: 10.1017/S0305004100026347.  Google Scholar

[3]

Chaos, 19 (2009), 013121, 10pp. doi: 10.1063/1.3085954.  Google Scholar

[4]

Trans. Am. Math. Soc., 350 (1998), 3523-3535. doi: 10.1090/S0002-9947-98-02089-3.  Google Scholar

[5]

J. Mod. Dyn., 7 (2013), 1-29. doi: 10.3934/jmd.2013.7.1.  Google Scholar

[6]

Ann. Sci. ENS, 47 (2014), 1085-1110.  Google Scholar

[7]

Nature, 401 (1999), p875. doi: 10.1038/44759.  Google Scholar

[8]

Encykl. d. Math. Wissensch. IV 2 II, Heft 6, 90 S (1912) (in German, translated in:) The conceptual foundations of the statistical approach in mechanics, (trans. Moravicsik, M. J.), 10-13 Cornell University Press, Itacha NY (1959). Google Scholar

[9]

Invent. Math., 197 (2014), 241-298. doi: 10.1007/s00222-013-0482-z.  Google Scholar

[10]

Phys. Rev., 185 (1969), 308-322. doi: 10.1103/PhysRev.185.308.  Google Scholar

[11]

Bull. AMS, 50 (1944), 915-919. doi: 10.1090/S0002-9904-1944-08262-1.  Google Scholar

[12]

J. Math. Phys., 21 (1980), 1802-1808. doi: 10.1063/1.524633.  Google Scholar

[13]

J. Math. Phys., 10 (1969), 397-414. Google Scholar

[14]

Compos. Math., 149 (2013), 1364-1380. doi: 10.1112/S0010437X12000887.  Google Scholar

[15]

Discrete Contin. Dyn. Syst., 33 (2013), 4341-4347. doi: 10.3934/dcds.2013.33.4341.  Google Scholar

[16]

J. Reine Angew. Math., 656 (2011), 223-244. doi: 10.1515/CRELLE.2011.052.  Google Scholar

[17]

Math. Notes, 18 (1975), 291-300.  Google Scholar

[18]

Math. Z., 141 (1975), 25-31. doi: 10.1007/BF01236981.  Google Scholar

[19]

Thèse Paris 11, 2014. Google Scholar

[20]

J. AMS, 18 (2005), 823-872. doi: 10.1090/S0894-0347-05-00490-X.  Google Scholar

[21]

Handbook of dynamical systems, North-Holland, Amsterdam, 1 (2002), 1015-1089. doi: 10.1016/S1874-575X(02)80015-7.  Google Scholar

[22]

J. Mod. Dyn., 6 (2012), 477-497.  Google Scholar

[23]

Dynamical systems and Diophantine approximation, 173-185, Semin. Congr., 19, Soc. Math. France, Paris, 2009.  Google Scholar

[24]

J. Stat. Phys., 141 (2010), 60-67. doi: 10.1007/s10955-010-0026-5.  Google Scholar

[25]

Inventiones Mathematicae, 97 (1989), 553-583. doi: 10.1007/BF01388890.  Google Scholar

[26]

Algebraic and topological dynamics, 205-258, Contemp. Math., 385, Amer. Math. Soc., Providence, RI, 2005 doi: 10.1090/conm/385/07199.  Google Scholar

[27]

Physics Letters A, 39 (1972), 397-398. doi: 10.1016/0375-9601(72)90112-0.  Google Scholar

[28]

J. Comp. Physics, 7 (1971), 528-546. doi: 10.1016/0021-9991(71)90109-4.  Google Scholar

show all references

References:
[1]

A. Avila and P. Hubert, Recurrence for the Wind-Tree Model,, Annales de l'Institut Henri Poincaré - Analyse non linéaire, ().   Google Scholar

[2]

Proc. Cambridge Philos. Soc., 47 (1951), 38-45. doi: 10.1017/S0305004100026347.  Google Scholar

[3]

Chaos, 19 (2009), 013121, 10pp. doi: 10.1063/1.3085954.  Google Scholar

[4]

Trans. Am. Math. Soc., 350 (1998), 3523-3535. doi: 10.1090/S0002-9947-98-02089-3.  Google Scholar

[5]

J. Mod. Dyn., 7 (2013), 1-29. doi: 10.3934/jmd.2013.7.1.  Google Scholar

[6]

Ann. Sci. ENS, 47 (2014), 1085-1110.  Google Scholar

[7]

Nature, 401 (1999), p875. doi: 10.1038/44759.  Google Scholar

[8]

Encykl. d. Math. Wissensch. IV 2 II, Heft 6, 90 S (1912) (in German, translated in:) The conceptual foundations of the statistical approach in mechanics, (trans. Moravicsik, M. J.), 10-13 Cornell University Press, Itacha NY (1959). Google Scholar

[9]

Invent. Math., 197 (2014), 241-298. doi: 10.1007/s00222-013-0482-z.  Google Scholar

[10]

Phys. Rev., 185 (1969), 308-322. doi: 10.1103/PhysRev.185.308.  Google Scholar

[11]

Bull. AMS, 50 (1944), 915-919. doi: 10.1090/S0002-9904-1944-08262-1.  Google Scholar

[12]

J. Math. Phys., 21 (1980), 1802-1808. doi: 10.1063/1.524633.  Google Scholar

[13]

J. Math. Phys., 10 (1969), 397-414. Google Scholar

[14]

Compos. Math., 149 (2013), 1364-1380. doi: 10.1112/S0010437X12000887.  Google Scholar

[15]

Discrete Contin. Dyn. Syst., 33 (2013), 4341-4347. doi: 10.3934/dcds.2013.33.4341.  Google Scholar

[16]

J. Reine Angew. Math., 656 (2011), 223-244. doi: 10.1515/CRELLE.2011.052.  Google Scholar

[17]

Math. Notes, 18 (1975), 291-300.  Google Scholar

[18]

Math. Z., 141 (1975), 25-31. doi: 10.1007/BF01236981.  Google Scholar

[19]

Thèse Paris 11, 2014. Google Scholar

[20]

J. AMS, 18 (2005), 823-872. doi: 10.1090/S0894-0347-05-00490-X.  Google Scholar

[21]

Handbook of dynamical systems, North-Holland, Amsterdam, 1 (2002), 1015-1089. doi: 10.1016/S1874-575X(02)80015-7.  Google Scholar

[22]

J. Mod. Dyn., 6 (2012), 477-497.  Google Scholar

[23]

Dynamical systems and Diophantine approximation, 173-185, Semin. Congr., 19, Soc. Math. France, Paris, 2009.  Google Scholar

[24]

J. Stat. Phys., 141 (2010), 60-67. doi: 10.1007/s10955-010-0026-5.  Google Scholar

[25]

Inventiones Mathematicae, 97 (1989), 553-583. doi: 10.1007/BF01388890.  Google Scholar

[26]

Algebraic and topological dynamics, 205-258, Contemp. Math., 385, Amer. Math. Soc., Providence, RI, 2005 doi: 10.1090/conm/385/07199.  Google Scholar

[27]

Physics Letters A, 39 (1972), 397-398. doi: 10.1016/0375-9601(72)90112-0.  Google Scholar

[28]

J. Comp. Physics, 7 (1971), 528-546. doi: 10.1016/0021-9991(71)90109-4.  Google Scholar

[1]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[2]

Nikolai Botkin, Varvara Turova, Barzin Hosseini, Johannes Diepolder, Florian Holzapfel. Tracking aircraft trajectories in the presence of wind disturbances. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021010

[3]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023

[4]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[5]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[6]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[7]

Xianbang Chen, Yang Liu, Bin Li. Adjustable robust optimization in enabling optimal day-ahead economic dispatch of CCHP-MG considering uncertainties of wind-solar power and electric vehicle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1639-1661. doi: 10.3934/jimo.2020038

[8]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[9]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[10]

Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026

[11]

Feng-Bin Wang, Xueying Wang. A general multipatch cholera model in periodic environments. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021105

[12]

Jia Li, Junxiang Xu. On the reducibility of a class of almost periodic Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3905-3919. doi: 10.3934/dcdsb.2020268

[13]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[14]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[15]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[16]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[17]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[18]

Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211

[19]

Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216

[20]

Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]