\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An Urysohn-type theorem under a dynamical constraint

Abstract Related Papers Cited by
  • We address the following question raised by M. Entov and L. Polterovich: given a continuous map $f:X\to X$ of a metric space $X$, closed subsets $A,B\subset X$, and an integer $n\geq 1$, when is it possible to find a continuous function $\theta:X\to\mathbb{R}$ such that \[ \theta f-\theta\leq 1, \quad \theta|A\leq 0, \quad\text{and}\quad \theta|B> n\,? \] To keep things as simple as possible, we solve the problem when $A$ is compact. The non-compact case will be treated in a later work.
    Mathematics Subject Classification: Primary: 37B99; Secondary: 37C10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Buhovsky, M. Entov and L. Polterovich, Poisson brackets and symplectic invariants, Selecta Math. (N.S.), 18 (2012), 89-157.doi: 10.1007/s00029-011-0068-9.

    [2]

    M. Entov and L. Polterovich, Lagrangian tetragons and instabilities in Hamiltonian dynamics, arXiv:1510.01748.

    [3]

    A. Fathi and P. Pageault, Aubry-Mather theory for homeomorphisms, Ergodic Theory Dynam. Systems, 35 (2015), 1187-1207.doi: 10.1017/etds.2013.107.

    [4]

    J. L. Kelley, General Topology, Graduate Texts in Mathematics, 27, Springer-Verlag, New York-Berlin, 1975.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(217) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return