\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The automorphism group of a minimal shift of stretched exponential growth

Abstract Related Papers Cited by
  • The group of automorphisms of a symbolic dynamical system is countable, but often very large. For example, for a mixing subshift of finite type, the automorphism group contains isomorphic copies of the free group on two generators and the direct sum of countably many copies of $\mathbb{Z}$. In contrast, the group of automorphisms of a symbolic system of zero entropy seems to be highly constrained. Our main result is that the automorphism group of any minimal subshift of stretched exponential growth with exponent $<1/2$, is amenable (as a countable discrete group). For shifts of polynomial growth, we further show that any finitely generated, torsion free subgroup of Aut(X) is virtually nilpotent.
    Mathematics Subject Classification: Primary: 37B10; Secondary: 43A07, 54H20, 68R15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Bass, The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc. (3), 25 (1972), 603-614.

    [2]

    M. Boyle, D. Lind and D. Rudolph, The automorphism group of a shift of finite type, Trans. Amer. Math. Soc., 306 (1988), 71-114.doi: 10.1090/S0002-9947-1988-0927684-2.

    [3]

    E. Coven, A. Quas and R. Yassawi, Computing automorphism groups of shifts, using atypical equivalence classes, Discrete Anal., (2016), 1-28.doi: 10.19086/da.611.

    [4]

    V. Cyr and B. Kra, The automorphism group of a shift of subquadratic growth, Proc. Amer. Math. Soc., 144 (2016), 613-621.doi: 10.1090/proc12719.

    [5]

    V. Cyr and B. Kra, The automorphism group of a shift of linear growth: beyond transitivity, Forum Math. Sigma, 3 (2015), e5, 27pp.doi: 10.1017/fms.2015.3.

    [6]

    P. de la Harpe, Topics in Geometric Group Theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000.

    [7]

    S. Donoso, F. Durand, A. Maass and S. Petite, On automorphism groups of low complexity subshifts, Ergodic Theory Dynam. Systems, 36 (2016), 64-95.doi: 10.1017/etds.2015.70.

    [8]

    S. Donoso, F. Durand, A. Maass and S. Petite, Private communication.

    [9]

    M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53-73.

    [10]

    Y. Guivarc'h, Groupes de Lie á croissance polynomiale, C. R. Acad. Sci. Paris Sér. A-B, 272 (1971), A1695-A1696.

    [11]

    G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory, 3 (1969), 320-375.doi: 10.1007/BF01691062.

    [12]

    M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math., 62 (1940), 1-42.doi: 10.2307/2371431.

    [13]

    K. H. Kim and F. W. Roush, On the automorphism groups of subshifts, Pure Math. Appl. Ser. B, 1 (1990), 203-230.

    [14]

    V. Salo, Toeplitz subshift whose automorphism group is not finitely generated, Colloquium Mathematicum, (2016).doi: 10.4064/cm6463-2-2016.

    [15]

    V. Salo and I. Törmä, Block maps between primitive uniform and Pisot substitutions, Ergodic Theory and Dynam. Systems, 35 (2015), 2292-2310.doi: 10.1017/etds.2014.29.

    [16]

    L. van den Dries and A. Wilkie, Gromov's theorem on groups of polynomial growth and elementary logic, J. Algebra, 89 (1984), 349-374.doi: 10.1016/0021-8693(84)90223-0.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(228) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return