2016, 10: 511-539. doi: 10.3934/jmd.2016.10.511

Mean action and the Calabi invariant

1. 

Department of Mathematics, 970 Evans Hall, University of California, Berkeley, CA 94720, United States

Received  December 2015 Revised  August 2016 Published  November 2016

Given an area-preserving diffeomorphism of the closed unit disk which is a rotation near the boundary, one can naturally define an ``action'' function on the disk which agrees with the rotation number on the boundary. The Calabi invariant of the diffeomorphism is the average of the action function over the disk. Given a periodic orbit of the diffeomorphism, its ``mean action'' is defined to be the average of the action function over the orbit. We show that if the Calabi invariant is less than the boundary rotation number, then the infimum over periodic orbits of the mean action is less than or equal to the Calabi invariant. The proof uses a new filtration on embedded contact homology determined by a transverse knot, which may be of independent interest. (An analogue of this filtration can be defined for any other version of contact homology in three dimensions that counts holomorphic curves.)
Citation: Michael Hutchings. Mean action and the Calabi invariant. Journal of Modern Dynamics, 2016, 10: 511-539. doi: 10.3934/jmd.2016.10.511
References:
[1]

A. Abbondandolo, B. Bramham, U. Hryniewicz and P. Salamão, Sharp systolic inequalities for Reeb flows on the three-sphere,, , (). 

[2]

E. Calabi, On the group of automorphisms of a symplectic manifold, in Problems in Analysis (Lectures at the Sympos. in honor of S. Bochner, Princeton Univ., Princeton, N.J., 1969) (ed. R. C. Gunning), Princeton Univ. Press, Princeton, 1970, 1-26.

[3]

V. Colin, P. Ghiggini and K. Honda, Embedded contact homology and open book decompositions,, , (). 

[4]

D. Cristofaro-Gardiner, The absolute gradings on embedded contact homology and Seiberg-Witten Floer cohomology, Algebr. Geom. Topol., 13 (2013), 2239-2260. doi: 10.2140/agt.2013.13.2239.

[5]

D. Cristofaro-Gardiner, M. Hutchings and V. Ramos, The asymptotics of ECH capacities, Invent. Math., 199 (2015), 187-214. doi: 10.1007/s00222-014-0510-7.

[6]

Y. Eliashberg, Legendrian and transversal knots in tight contact 3-manifolds, in Topological Methods in Modern Mathematics, Publish or Perish, Houston, TX, 1993, 171-193.

[7]

M. Entov and L. Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res. Not., (2003), 1635-1676. doi: 10.1155/S1073792803210011.

[8]

J. Etnyre, Legendrian and transversal knots, in Handbook of Knot Theory, Elsevier B. V., Amsterdam, 2005, 105-185. doi: 10.1016/B978-044451452-3/50004-6.

[9]

J. Franks, Area preserving homeomorphisms of open surfaces of genus zero, New York J. Math., 2 (1996), 1-19.

[10]

J.-M. Gambaudo and É. Ghys, Enlacements asymptotiques, Topology, 36 (1997), 1355-1379. doi: 10.1016/S0040-9383(97)00001-3.

[11]

H. Hofer, K. Wysocki and E. Zehnder, Properties of pseudo-holomorphic curves in symplectizations. II. Embedding controls and algebraic invariants, Geom. and Func. Anal., 5 (1995), 270-328. doi: 10.1007/BF01895669.

[12]

H. Hofer, K. Wysocki and E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces, Ann. of Math. (2), 148 (1998), 197-289. doi: 10.2307/120994.

[13]

H. Hofer, K. Wysock and E. Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. (2), 157 (2003), 125-255. doi: 10.4007/annals.2003.157.125.

[14]

M. Hutchings, Quantitative embedded contact homology, J. Diff. Geom., 88 (2011), 231-266.

[15]

M. Hutchings, Lecture notes on embedded contact homology, in Contact and Symplectic Topology, Bolyai Soc. Math. Stud., 26, János Bolyai Math. Soc., Budapest, 2014, 389-484. doi: 10.1007/978-3-319-02036-5_9.

[16]

M. Hutchings, Embedded contact homology as a (symplectic) field theory,, in preparation., (). 

[17]

M. Hutchings and C. H. Taubes, Gluing pseudoholomorphic curves along branched covered cylinders I, J. Symplectic Geom., 5 (2007), 43-137. doi: 10.4310/JSG.2007.v5.n1.a5.

[18]

M. Hutchings and C. H. Taubes, Gluing pseudoholomorphic curves along branched covered cylinders II, J. Symplectic Geom., 7 (2009), 29-133. doi: 10.4310/JSG.2009.v7.n1.a2.

[19]

M. Hutchings and C. H. Taubes, Proof of the Arnold chord conjecture in three dimensions, II, Geom. Topol., 17 (2013), 2601-2688. doi: 10.2140/gt.2013.17.2601.

[20]

P. B. Kronheimer and T. S. Mrowka, Monopoles and Three-Manifolds, Cambridge Univ. Press, 2007. doi: 10.1017/CBO9780511543111.

[21]

R. Siefring, Relative asymptotic behavior of pseudoholomorphic half-cylinders, Comm. Pure Appl. Math., 61 (2008), 1631-1684. doi: 10.1002/cpa.20224.

[22]

C. H. Taubes, Embedded contact homology and Seiberg-Witten Floer homology I, Geom. Topol., 14 (2010), 2497-2581. doi: 10.2140/gt.2010.14.2497.

show all references

References:
[1]

A. Abbondandolo, B. Bramham, U. Hryniewicz and P. Salamão, Sharp systolic inequalities for Reeb flows on the three-sphere,, , (). 

[2]

E. Calabi, On the group of automorphisms of a symplectic manifold, in Problems in Analysis (Lectures at the Sympos. in honor of S. Bochner, Princeton Univ., Princeton, N.J., 1969) (ed. R. C. Gunning), Princeton Univ. Press, Princeton, 1970, 1-26.

[3]

V. Colin, P. Ghiggini and K. Honda, Embedded contact homology and open book decompositions,, , (). 

[4]

D. Cristofaro-Gardiner, The absolute gradings on embedded contact homology and Seiberg-Witten Floer cohomology, Algebr. Geom. Topol., 13 (2013), 2239-2260. doi: 10.2140/agt.2013.13.2239.

[5]

D. Cristofaro-Gardiner, M. Hutchings and V. Ramos, The asymptotics of ECH capacities, Invent. Math., 199 (2015), 187-214. doi: 10.1007/s00222-014-0510-7.

[6]

Y. Eliashberg, Legendrian and transversal knots in tight contact 3-manifolds, in Topological Methods in Modern Mathematics, Publish or Perish, Houston, TX, 1993, 171-193.

[7]

M. Entov and L. Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res. Not., (2003), 1635-1676. doi: 10.1155/S1073792803210011.

[8]

J. Etnyre, Legendrian and transversal knots, in Handbook of Knot Theory, Elsevier B. V., Amsterdam, 2005, 105-185. doi: 10.1016/B978-044451452-3/50004-6.

[9]

J. Franks, Area preserving homeomorphisms of open surfaces of genus zero, New York J. Math., 2 (1996), 1-19.

[10]

J.-M. Gambaudo and É. Ghys, Enlacements asymptotiques, Topology, 36 (1997), 1355-1379. doi: 10.1016/S0040-9383(97)00001-3.

[11]

H. Hofer, K. Wysocki and E. Zehnder, Properties of pseudo-holomorphic curves in symplectizations. II. Embedding controls and algebraic invariants, Geom. and Func. Anal., 5 (1995), 270-328. doi: 10.1007/BF01895669.

[12]

H. Hofer, K. Wysocki and E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces, Ann. of Math. (2), 148 (1998), 197-289. doi: 10.2307/120994.

[13]

H. Hofer, K. Wysock and E. Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. (2), 157 (2003), 125-255. doi: 10.4007/annals.2003.157.125.

[14]

M. Hutchings, Quantitative embedded contact homology, J. Diff. Geom., 88 (2011), 231-266.

[15]

M. Hutchings, Lecture notes on embedded contact homology, in Contact and Symplectic Topology, Bolyai Soc. Math. Stud., 26, János Bolyai Math. Soc., Budapest, 2014, 389-484. doi: 10.1007/978-3-319-02036-5_9.

[16]

M. Hutchings, Embedded contact homology as a (symplectic) field theory,, in preparation., (). 

[17]

M. Hutchings and C. H. Taubes, Gluing pseudoholomorphic curves along branched covered cylinders I, J. Symplectic Geom., 5 (2007), 43-137. doi: 10.4310/JSG.2007.v5.n1.a5.

[18]

M. Hutchings and C. H. Taubes, Gluing pseudoholomorphic curves along branched covered cylinders II, J. Symplectic Geom., 7 (2009), 29-133. doi: 10.4310/JSG.2009.v7.n1.a2.

[19]

M. Hutchings and C. H. Taubes, Proof of the Arnold chord conjecture in three dimensions, II, Geom. Topol., 17 (2013), 2601-2688. doi: 10.2140/gt.2013.17.2601.

[20]

P. B. Kronheimer and T. S. Mrowka, Monopoles and Three-Manifolds, Cambridge Univ. Press, 2007. doi: 10.1017/CBO9780511543111.

[21]

R. Siefring, Relative asymptotic behavior of pseudoholomorphic half-cylinders, Comm. Pure Appl. Math., 61 (2008), 1631-1684. doi: 10.1002/cpa.20224.

[22]

C. H. Taubes, Embedded contact homology and Seiberg-Witten Floer homology I, Geom. Topol., 14 (2010), 2497-2581. doi: 10.2140/gt.2010.14.2497.

[1]

Al Momin. Contact homology of orbit complements and implied existence. Journal of Modern Dynamics, 2011, 5 (3) : 409-472. doi: 10.3934/jmd.2011.5.409

[2]

Asaf Kislev. Compactly supported Hamiltonian loops with a non-zero Calabi invariant. Electronic Research Announcements, 2014, 21: 80-88. doi: 10.3934/era.2014.21.80

[3]

Qihuai Liu, Pedro J. Torres. Orbital dynamics on invariant sets of contact Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021297

[4]

Radu Saghin. Note on homology of expanding foliations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 349-360. doi: 10.3934/dcdss.2009.2.349

[5]

Hongnian Huang. On the extension and smoothing of the Calabi flow on complex tori. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6153-6164. doi: 10.3934/dcds.2017265

[6]

Gianne Derks, Sara Maad, Björn Sandstede. Perturbations of embedded eigenvalues for the bilaplacian on a cylinder. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 801-821. doi: 10.3934/dcds.2008.21.801

[7]

Octav Cornea and Francois Lalonde. Cluster homology: An overview of the construction and results. Electronic Research Announcements, 2006, 12: 1-12.

[8]

Stephen Coughlan, Łukasz Gołębiowski, Grzegorz Kapustka, Michał Kapustka. Arithmetically Gorenstein Calabi--Yau threefolds in $\mathbb{P}^7$. Electronic Research Announcements, 2016, 23: 52-68. doi: 10.3934/era.2016.23.006

[9]

S. Aiello, Luigi Barletti, Aldo Belleni-Morante. Identification of photon sources, stochastically embedded in an interstellar cloud. Kinetic and Related Models, 2009, 2 (3) : 425-432. doi: 10.3934/krm.2009.2.425

[10]

Ephraim Agyingi, Tamas Wiandt, Sophia A. Maggelakis. Thermal detection of a prevascular tumor embedded in breast tissue. Mathematical Biosciences & Engineering, 2015, 12 (5) : 907-915. doi: 10.3934/mbe.2015.12.907

[11]

John Guckenheimer. Continuation methods for principal foliations of embedded surfaces. Journal of Computational Dynamics, 2022  doi: 10.3934/jcd.2022007

[12]

Sonja Hohloch. Transport, flux and growth of homoclinic Floer homology. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3587-3620. doi: 10.3934/dcds.2012.32.3587

[13]

Sarah Day; William D. Kalies; Konstantin Mischaikow and Thomas Wanner. Probabilistic and numerical validation of homology computations for nodal domains. Electronic Research Announcements, 2007, 13: 60-73.

[14]

Mark Pollicott. Closed orbits and homology for $C^2$-flows. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 529-534. doi: 10.3934/dcds.1999.5.529

[15]

Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, 2021, 29 (4) : 2553-2560. doi: 10.3934/era.2021001

[16]

Alexander Fauck, Will J. Merry, Jagna Wiśniewska. Computing the Rabinowitz Floer homology of tentacular hyperboloids. Journal of Modern Dynamics, 2021, 17: 353-399. doi: 10.3934/jmd.2021013

[17]

Xinlin Cao, Yi-Hsuan Lin, Hongyu Liu. Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators. Inverse Problems and Imaging, 2019, 13 (1) : 197-210. doi: 10.3934/ipi.2019011

[18]

Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist, Amit K. Sanyal. Embedded geodesic problems and optimal control for matrix Lie groups. Journal of Geometric Mechanics, 2011, 3 (2) : 197-223. doi: 10.3934/jgm.2011.3.197

[19]

Yossi Bokor, Katharine Turner, Christopher Williams. Reconstructing linearly embedded graphs: A first step to stratified space learning. Foundations of Data Science, 2021  doi: 10.3934/fods.2021026

[20]

Xin Xu, Jessi Cisewski-Kehe. EmT: Locating empty territories of homology group generators in a dataset. Foundations of Data Science, 2019, 1 (2) : 227-247. doi: 10.3934/fods.2019010

2020 Impact Factor: 0.848

Metrics

  • PDF downloads (235)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]