Citation: |
[1] |
A. Abbondandolo, B. Bramham, U. Hryniewicz and P. Salamão, Sharp systolic inequalities for Reeb flows on the three-sphere, arXiv:1504.05258. |
[2] |
E. Calabi, On the group of automorphisms of a symplectic manifold, in Problems in Analysis (Lectures at the Sympos. in honor of S. Bochner, Princeton Univ., Princeton, N.J., 1969) (ed. R. C. Gunning), Princeton Univ. Press, Princeton, 1970, 1-26. |
[3] |
V. Colin, P. Ghiggini and K. Honda, Embedded contact homology and open book decompositions, arXiv:1008.2734. |
[4] |
D. Cristofaro-Gardiner, The absolute gradings on embedded contact homology and Seiberg-Witten Floer cohomology, Algebr. Geom. Topol., 13 (2013), 2239-2260.doi: 10.2140/agt.2013.13.2239. |
[5] |
D. Cristofaro-Gardiner, M. Hutchings and V. Ramos, The asymptotics of ECH capacities, Invent. Math., 199 (2015), 187-214.doi: 10.1007/s00222-014-0510-7. |
[6] |
Y. Eliashberg, Legendrian and transversal knots in tight contact 3-manifolds, in Topological Methods in Modern Mathematics, Publish or Perish, Houston, TX, 1993, 171-193. |
[7] |
M. Entov and L. Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res. Not., (2003), 1635-1676.doi: 10.1155/S1073792803210011. |
[8] |
J. Etnyre, Legendrian and transversal knots, in Handbook of Knot Theory, Elsevier B. V., Amsterdam, 2005, 105-185.doi: 10.1016/B978-044451452-3/50004-6. |
[9] |
J. Franks, Area preserving homeomorphisms of open surfaces of genus zero, New York J. Math., 2 (1996), 1-19. |
[10] |
J.-M. Gambaudo and É. Ghys, Enlacements asymptotiques, Topology, 36 (1997), 1355-1379.doi: 10.1016/S0040-9383(97)00001-3. |
[11] |
H. Hofer, K. Wysocki and E. Zehnder, Properties of pseudo-holomorphic curves in symplectizations. II. Embedding controls and algebraic invariants, Geom. and Func. Anal., 5 (1995), 270-328.doi: 10.1007/BF01895669. |
[12] |
H. Hofer, K. Wysocki and E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces, Ann. of Math. (2), 148 (1998), 197-289.doi: 10.2307/120994. |
[13] |
H. Hofer, K. Wysock and E. Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. (2), 157 (2003), 125-255.doi: 10.4007/annals.2003.157.125. |
[14] |
M. Hutchings, Quantitative embedded contact homology, J. Diff. Geom., 88 (2011), 231-266. |
[15] |
M. Hutchings, Lecture notes on embedded contact homology, in Contact and Symplectic Topology, Bolyai Soc. Math. Stud., 26, János Bolyai Math. Soc., Budapest, 2014, 389-484.doi: 10.1007/978-3-319-02036-5_9. |
[16] |
M. Hutchings, Embedded contact homology as a (symplectic) field theory, in preparation. |
[17] |
M. Hutchings and C. H. Taubes, Gluing pseudoholomorphic curves along branched covered cylinders I, J. Symplectic Geom., 5 (2007), 43-137.doi: 10.4310/JSG.2007.v5.n1.a5. |
[18] |
M. Hutchings and C. H. Taubes, Gluing pseudoholomorphic curves along branched covered cylinders II, J. Symplectic Geom., 7 (2009), 29-133.doi: 10.4310/JSG.2009.v7.n1.a2. |
[19] |
M. Hutchings and C. H. Taubes, Proof of the Arnold chord conjecture in three dimensions, II, Geom. Topol., 17 (2013), 2601-2688.doi: 10.2140/gt.2013.17.2601. |
[20] |
P. B. Kronheimer and T. S. Mrowka, Monopoles and Three-Manifolds, Cambridge Univ. Press, 2007.doi: 10.1017/CBO9780511543111. |
[21] |
R. Siefring, Relative asymptotic behavior of pseudoholomorphic half-cylinders, Comm. Pure Appl. Math., 61 (2008), 1631-1684.doi: 10.1002/cpa.20224. |
[22] |
C. H. Taubes, Embedded contact homology and Seiberg-Witten Floer homology I, Geom. Topol., 14 (2010), 2497-2581.doi: 10.2140/gt.2010.14.2497. |