- Previous Article
- JMD Home
- This Volume
-
Next Article
Mean action and the Calabi invariant
New infinite families of pseudo-Anosov maps with vanishing Sah-Arnoux-Fathi invariant
1. | Department of Mathematics, Oregon State University, Corvallis, OR 97331, United States |
References:
[1] |
P. Arnoux, Échanges d'intervalles et flots sur les surfaces, in Ergodic Theory (Sem., Les Plans-sur-Bex, 1980), Monograph. Enseign. Math., 29, Univ. Genève, Geneva, 1981, 5-38. |
[2] | |
[3] |
P. Arnoux, J. Bernat and X. Bressaud, Geometrical models for substitutions, Exp. Math., 20 (2011), 97-127.
doi: 10.1080/10586458.2011.544590. |
[4] |
P. Arnoux and G. Rauzy, Représentation géométrique de suites de complexité $2n+1$, Bull. Soc. Math. France, 119 (1991), 199-215. |
[5] |
P. Arnoux and T. A. Schmidt, Veech surfaces with non-periodic directions in the trace field, J. Mod. Dyn., 3 (2009), 611-629.
doi: 10.3934/jmd.2009.3.611. |
[6] |
P. Arnoux and J.-C. Yoccoz, Construction de difféomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris Sér. I Math., 292 (1981), 75-78. |
[7] |
J. Birman, P. Brinkmann and K. Kawamuro, Polynomial invariants of pseudo-Anosov maps, J. Topol. Anal., 4 (2012), 13-47.
doi: 10.1142/S1793525312500033. |
[8] |
C. Boissy, Classification of Rauzy classes in the moduli space of abelian and quadratic differentials, Discrete Contin. Dyn. Syst., 32 (2012), 3433-3457.
doi: 10.3934/dcds.2012.32.3433. |
[9] |
M. Boshernitzan, Subgroup of interval exchanges generated by torsion elements and rotations, Proc. Amer. Math. Soc., 144 (2016), 2565-2573.
doi: 10.1090/proc/12958. |
[10] |
K. Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc., 17 (2004), 871-908.
doi: 10.1090/S0894-0347-04-00461-8. |
[11] |
K. Calta and T. A. Schmidt, Infinitely many lattice surfaces with special pseudo-Anosov maps, J. Mod. Dyn., 7 (2013), 239-254.
doi: 10.3934/jmd.2013.7.239. |
[12] |
K. Calta and J. Smillie, Algebraically periodic translation surfaces, J. Mod. Dyn., 2 (2008), 209-248.
doi: 10.3934/jmd.2008.2.209. |
[13] |
B. Farb and D. Margalit, A Primer on Mapping Class Groups, Princeton Mathematical Series, 49, Princeton University Press, Princeton, NJ, 2012. |
[14] |
D. Fried, Growth rate of surface homeomorphisms and flow equivalence, Ergodic Theory and Dyn. Sys., 5 (1985), 539-563.
doi: 10.1017/S0143385700003151. |
[15] |
J. Hubbard and H. Masur, Quadratic differentials and foliations, Acta Math., 142 (1979), 221-274.
doi: 10.1007/BF02395062. |
[16] |
P. Hubert and E. Lanneau, Veech groups without parabolic elements, Duke Math. J., 133 (2006), 335-346.
doi: 10.1215/S0012-7094-06-13326-4. |
[17] |
P. Hubert, E. Lanneau and M. Möller, The Arnoux-Yoccoz Teichmüller disc, Geom. Funct. Anal., 18 (2009), 1988-2016.
doi: 10.1007/s00039-009-0706-y. |
[18] |
M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678.
doi: 10.1007/s00222-003-0303-x. |
[19] |
E. Lanneau, Infinite sequence of fixed point free pseudo-Anosov homeomorphisms on a family of genus two surfaces, in Dynamical Numbers - Interplay Between Dynamical Systems and Number Theory, Contemp. Math., 532, Amer. Math. Soc., Providence, RI, 2010, 231-242.
doi: 10.1090/conm/532/10493. |
[20] |
E. Lanneau and J.-C. Thiffeault, On the minimum dilatation of pseudo-Anosov homeomorphisms on surfaces of small genus, Ann. Inst. Fourier (Grenoble), 61 (2011), 105-144.
doi: 10.5802/aif.2599. |
[21] |
J. H. Lowenstein, G. Poggiaspalla and F. Vivaldi, Interval exchange transformations over algebraic number fields: The cubic Arnoux-Yoccoz model, Dyn. Syst., 22 (2007), 73-106.
doi: 10.1080/14689360601028126. |
[22] |
_______, Geometric representation of interval exchange maps over algebraic number fields, Nonlinearity, 21 (2008), 149-177.
doi: 10.1088/0951-7715/21/1/009. |
[23] |
R. Kenyon and J. Smillie, Billiards in rational-angled triangles, Comment. Mathem. Helv., 75 (2000), 65-108.
doi: 10.1007/s000140050113. |
[24] |
D. Margalit and S. Spallone, A homological recipe for pseudo-Anosovs, Math. Res. Lett., 14 (2007), 853-863.
doi: 10.4310/MRL.2007.v14.n5.a12. |
[25] |
S. Marmi, P. Moussa and J.-C. Yoccoz, The cohomological equation for Roth-type interval exchange maps, J. Amer. Math. Soc., 18 (2005), 823-872.
doi: 10.1090/S0894-0347-05-00490-X. |
[26] |
C. T. McMullen, Teichmüller geodesics of infinite complexity, Acta Math., 191 (2003), 191-223.
doi: 10.1007/BF02392964. |
[27] |
______, Cascades in the dynamics of measured foliations, Ann. Sci. Éc. Norm. Supér. (4), 48 (2015), 1-39. |
[28] |
G. Rauzy, Échanges d'intervalles et transformations induites, Acta Arith., 34 (1979), 315-328. |
[29] |
D. Rosen and C. Towse, Continued fraction representations of units associated with certain Hecke groups, Arch. Math. (Basel), 77 (2001), 294-302.
doi: 10.1007/PL00000494. |
[30] |
B. Strenner, Lifts of pseudo-Anosov homeomorphisms of nonorientable surfaces have vanishing SAF invariant, preprint, arXiv:1604.05614. |
[31] |
W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.), 19 (1988), 417-431.
doi: 10.1090/S0273-0979-1988-15685-6. |
[32] |
W. A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), 115 (1982), 201-242.
doi: 10.2307/1971391. |
[33] |
______, Teichmüller curves in modular space, Eisenstein series and an application to triangular billiards, Inv. Math., 97 (1989), 553-583.
doi: 10.1007/BF01388890. |
[34] |
M. Viana, Ergodic theory of interval exchange maps, Rev. Mat. Complut., 19 (2006), 7-100.
doi: 10.5209/rev_REMA.2006.v19.n1.16621. |
[35] |
J.-C. Yoccoz, Continued fraction algorithms for interval exchange maps: An introduction, in Frontiers in Number Theory, Physics, and Geometry, I, Springer, Berlin, 2006, 401-435.
doi: 10.1007/978-3-540-31347-2\_12. |
show all references
References:
[1] |
P. Arnoux, Échanges d'intervalles et flots sur les surfaces, in Ergodic Theory (Sem., Les Plans-sur-Bex, 1980), Monograph. Enseign. Math., 29, Univ. Genève, Geneva, 1981, 5-38. |
[2] | |
[3] |
P. Arnoux, J. Bernat and X. Bressaud, Geometrical models for substitutions, Exp. Math., 20 (2011), 97-127.
doi: 10.1080/10586458.2011.544590. |
[4] |
P. Arnoux and G. Rauzy, Représentation géométrique de suites de complexité $2n+1$, Bull. Soc. Math. France, 119 (1991), 199-215. |
[5] |
P. Arnoux and T. A. Schmidt, Veech surfaces with non-periodic directions in the trace field, J. Mod. Dyn., 3 (2009), 611-629.
doi: 10.3934/jmd.2009.3.611. |
[6] |
P. Arnoux and J.-C. Yoccoz, Construction de difféomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris Sér. I Math., 292 (1981), 75-78. |
[7] |
J. Birman, P. Brinkmann and K. Kawamuro, Polynomial invariants of pseudo-Anosov maps, J. Topol. Anal., 4 (2012), 13-47.
doi: 10.1142/S1793525312500033. |
[8] |
C. Boissy, Classification of Rauzy classes in the moduli space of abelian and quadratic differentials, Discrete Contin. Dyn. Syst., 32 (2012), 3433-3457.
doi: 10.3934/dcds.2012.32.3433. |
[9] |
M. Boshernitzan, Subgroup of interval exchanges generated by torsion elements and rotations, Proc. Amer. Math. Soc., 144 (2016), 2565-2573.
doi: 10.1090/proc/12958. |
[10] |
K. Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc., 17 (2004), 871-908.
doi: 10.1090/S0894-0347-04-00461-8. |
[11] |
K. Calta and T. A. Schmidt, Infinitely many lattice surfaces with special pseudo-Anosov maps, J. Mod. Dyn., 7 (2013), 239-254.
doi: 10.3934/jmd.2013.7.239. |
[12] |
K. Calta and J. Smillie, Algebraically periodic translation surfaces, J. Mod. Dyn., 2 (2008), 209-248.
doi: 10.3934/jmd.2008.2.209. |
[13] |
B. Farb and D. Margalit, A Primer on Mapping Class Groups, Princeton Mathematical Series, 49, Princeton University Press, Princeton, NJ, 2012. |
[14] |
D. Fried, Growth rate of surface homeomorphisms and flow equivalence, Ergodic Theory and Dyn. Sys., 5 (1985), 539-563.
doi: 10.1017/S0143385700003151. |
[15] |
J. Hubbard and H. Masur, Quadratic differentials and foliations, Acta Math., 142 (1979), 221-274.
doi: 10.1007/BF02395062. |
[16] |
P. Hubert and E. Lanneau, Veech groups without parabolic elements, Duke Math. J., 133 (2006), 335-346.
doi: 10.1215/S0012-7094-06-13326-4. |
[17] |
P. Hubert, E. Lanneau and M. Möller, The Arnoux-Yoccoz Teichmüller disc, Geom. Funct. Anal., 18 (2009), 1988-2016.
doi: 10.1007/s00039-009-0706-y. |
[18] |
M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678.
doi: 10.1007/s00222-003-0303-x. |
[19] |
E. Lanneau, Infinite sequence of fixed point free pseudo-Anosov homeomorphisms on a family of genus two surfaces, in Dynamical Numbers - Interplay Between Dynamical Systems and Number Theory, Contemp. Math., 532, Amer. Math. Soc., Providence, RI, 2010, 231-242.
doi: 10.1090/conm/532/10493. |
[20] |
E. Lanneau and J.-C. Thiffeault, On the minimum dilatation of pseudo-Anosov homeomorphisms on surfaces of small genus, Ann. Inst. Fourier (Grenoble), 61 (2011), 105-144.
doi: 10.5802/aif.2599. |
[21] |
J. H. Lowenstein, G. Poggiaspalla and F. Vivaldi, Interval exchange transformations over algebraic number fields: The cubic Arnoux-Yoccoz model, Dyn. Syst., 22 (2007), 73-106.
doi: 10.1080/14689360601028126. |
[22] |
_______, Geometric representation of interval exchange maps over algebraic number fields, Nonlinearity, 21 (2008), 149-177.
doi: 10.1088/0951-7715/21/1/009. |
[23] |
R. Kenyon and J. Smillie, Billiards in rational-angled triangles, Comment. Mathem. Helv., 75 (2000), 65-108.
doi: 10.1007/s000140050113. |
[24] |
D. Margalit and S. Spallone, A homological recipe for pseudo-Anosovs, Math. Res. Lett., 14 (2007), 853-863.
doi: 10.4310/MRL.2007.v14.n5.a12. |
[25] |
S. Marmi, P. Moussa and J.-C. Yoccoz, The cohomological equation for Roth-type interval exchange maps, J. Amer. Math. Soc., 18 (2005), 823-872.
doi: 10.1090/S0894-0347-05-00490-X. |
[26] |
C. T. McMullen, Teichmüller geodesics of infinite complexity, Acta Math., 191 (2003), 191-223.
doi: 10.1007/BF02392964. |
[27] |
______, Cascades in the dynamics of measured foliations, Ann. Sci. Éc. Norm. Supér. (4), 48 (2015), 1-39. |
[28] |
G. Rauzy, Échanges d'intervalles et transformations induites, Acta Arith., 34 (1979), 315-328. |
[29] |
D. Rosen and C. Towse, Continued fraction representations of units associated with certain Hecke groups, Arch. Math. (Basel), 77 (2001), 294-302.
doi: 10.1007/PL00000494. |
[30] |
B. Strenner, Lifts of pseudo-Anosov homeomorphisms of nonorientable surfaces have vanishing SAF invariant, preprint, arXiv:1604.05614. |
[31] |
W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.), 19 (1988), 417-431.
doi: 10.1090/S0273-0979-1988-15685-6. |
[32] |
W. A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), 115 (1982), 201-242.
doi: 10.2307/1971391. |
[33] |
______, Teichmüller curves in modular space, Eisenstein series and an application to triangular billiards, Inv. Math., 97 (1989), 553-583.
doi: 10.1007/BF01388890. |
[34] |
M. Viana, Ergodic theory of interval exchange maps, Rev. Mat. Complut., 19 (2006), 7-100.
doi: 10.5209/rev_REMA.2006.v19.n1.16621. |
[35] |
J.-C. Yoccoz, Continued fraction algorithms for interval exchange maps: An introduction, in Frontiers in Number Theory, Physics, and Geometry, I, Springer, Berlin, 2006, 401-435.
doi: 10.1007/978-3-540-31347-2\_12. |
[1] |
Kariane Calta, Thomas A. Schmidt. Infinitely many lattice surfaces with special pseudo-Anosov maps. Journal of Modern Dynamics, 2013, 7 (2) : 239-254. doi: 10.3934/jmd.2013.7.239 |
[2] |
Chris Johnson, Martin Schmoll. Pseudo-Anosov eigenfoliations on Panov planes. Electronic Research Announcements, 2014, 21: 89-108. doi: 10.3934/era.2014.21.89 |
[3] |
S. Öykü Yurttaş. Dynnikov and train track transition matrices of pseudo-Anosov braids. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 541-570. doi: 10.3934/dcds.2016.36.541 |
[4] |
Joanna Tyrcha, John Hertz. Network inference with hidden units. Mathematical Biosciences & Engineering, 2014, 11 (1) : 149-165. doi: 10.3934/mbe.2014.11.149 |
[5] |
Juan Alonso, Nancy Guelman, Juliana Xavier. Actions of solvable Baumslag-Solitar groups on surfaces with (pseudo)-Anosov elements. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1817-1827. doi: 10.3934/dcds.2015.35.1817 |
[6] |
Antonio Di Crescenzo, Maria Longobardi, Barbara Martinucci. On a spike train probability model with interacting neural units. Mathematical Biosciences & Engineering, 2014, 11 (2) : 217-231. doi: 10.3934/mbe.2014.11.217 |
[7] |
Renato Bruni, Gianpiero Bianchi, Alessandra Reale. A combinatorial optimization approach to the selection of statistical units. Journal of Industrial and Management Optimization, 2016, 12 (2) : 515-527. doi: 10.3934/jimo.2016.12.515 |
[8] |
F. S. Vannucchi, S. Boccaletti. Chaotic spreading of epidemics in complex networks of excitable units. Mathematical Biosciences & Engineering, 2004, 1 (1) : 49-55. doi: 10.3934/mbe.2004.1.49 |
[9] |
Christopher Oballe, David Boothe, Piotr J. Franaszczuk, Vasileios Maroulas. ToFU: Topology functional units for deep learning. Foundations of Data Science, 2021 doi: 10.3934/fods.2021021 |
[10] |
Kariane Calta, John Smillie. Algebraically periodic translation surfaces. Journal of Modern Dynamics, 2008, 2 (2) : 209-248. doi: 10.3934/jmd.2008.2.209 |
[11] |
Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041 |
[12] |
Fernando Hernando, Diego Ruano. New linear codes from matrix-product codes with polynomial units. Advances in Mathematics of Communications, 2010, 4 (3) : 363-367. doi: 10.3934/amc.2010.4.363 |
[13] |
Ruiyue Lin, Zhiping Chen, Zongxin Li. A new approach for allocating fixed costs among decision making units. Journal of Industrial and Management Optimization, 2016, 12 (1) : 211-228. doi: 10.3934/jimo.2016.12.211 |
[14] |
Benjamin Dozier. Equidistribution of saddle connections on translation surfaces. Journal of Modern Dynamics, 2019, 14: 87-120. doi: 10.3934/jmd.2019004 |
[15] |
Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801 |
[16] |
Pascal Hubert, Gabriela Schmithüsen. Infinite translation surfaces with infinitely generated Veech groups. Journal of Modern Dynamics, 2010, 4 (4) : 715-732. doi: 10.3934/jmd.2010.4.715 |
[17] |
Gholam Hassan Shirdel, Somayeh Ramezani-Tarkhorani. A new method for ranking decision making units using common set of weights: A developed criterion. Journal of Industrial and Management Optimization, 2020, 16 (2) : 633-651. doi: 10.3934/jimo.2018171 |
[18] |
Mazyar Zahedi-Seresht, Gholam-Reza Jahanshahloo, Josef Jablonsky, Sedighe Asghariniya. A new Monte Carlo based procedure for complete ranking efficient units in DEA models. Numerical Algebra, Control and Optimization, 2017, 7 (4) : 403-416. doi: 10.3934/naco.2017025 |
[19] |
Glenn F. Webb. Individual based models and differential equations models of nosocomial epidemics in hospital intensive care units. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1145-1166. doi: 10.3934/dcdsb.2017056 |
[20] |
Patrick Foulon, Boris Hasselblatt. Lipschitz continuous invariant forms for algebraic Anosov systems. Journal of Modern Dynamics, 2010, 4 (3) : 571-584. doi: 10.3934/jmd.2010.4.571 |
2021 Impact Factor: 0.641
Tools
Metrics
Other articles
by authors
[Back to Top]