\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Effective decay of multiple correlations in semidirect product actions

Abstract Related Papers Cited by
  • We prove effective decay of certain multiple correlation coefficients for measure preserving, mixing Weyl chamber actions of semidirect products of semisimple groups with $G$-vector spaces. These estimates provide decay for actions in split semisimple groups of higher rank.
    Mathematics Subject Classification: Primary: 37A25, 22E50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. B. Bekka, P. de la Harpe and A. Valette, Kazhdan's Property (T), Cambridge University Press, Cambridge, 2008.doi: 10.1017/CBO9780511542749.

    [2]

    M. B. Bekka and M. Mayer, Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces, London Mathematical Society Lecture Note Series, 269, Cambridge University Press, Cambridge, 2000.doi: 10.1017/CBO9780511758898.

    [3]

    M. Björklund, M. Einsiedler and A. Gorodnik, Effective multiple mixing for semisimple groups, in preparation.

    [4]

    A. Borel, Linear Algebraic Groups, Second edition, Graduate Texts in Mathematics, 126, Springer-Verlag, New York, 1991.doi: 10.1007/978-1-4612-0941-6.

    [5]

    M. Cowling, U. Haagerup and R. Howe, Almost $L^2$ matrix coefficients, J. Reiner Angew. Math., 387 (1988), 97-110.

    [6]

    D. Dolgopyat, Limit theorems for partially hyperbolic systems, Trans. Amer. Math. Soc., 356 (2004), 1637-1689.doi: 10.1090/S0002-9947-03-03335-X.

    [7]

    M. Einsiedler, G. Margulis and A. Venkatesh, Effective equidistribution for closed orbits of semisimple groups on homogeneous spaces, Invent. Math., 177 (2009), 137-212.doi: 10.1007/s00222-009-0177-7.

    [8]

    R. E. Howe and C. C. Moore, Asymptotic properties of unitary representations, J. Funct. Anal., 32 (1979), 72-96.doi: 10.1016/0022-1236(79)90078-8.

    [9]

    R. Howe and E. C. Tan, Non Abelian Harmonic Analysis, Universitext, Springer-Verlag, New York, 1992.doi: 10.1007/978-1-4613-9200-2.

    [10]

    J. E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975.

    [11]

    A. Katok and R. Spatzier, First cohomology of Anosov actions of higher rank Abelian groups and applications to rigidity, Inst. Hautes Études Sci. Publ. Math., 79 (1994), 131-156.

    [12]

    A. W. Knapp, Representation Theory of Semisimple Groups. An Overview Based on Examples, Princeton Landmarks in Mathematics, 36, Princeton University Press, Princeton, NJ, 1986.

    [13]

    S. Lang, Real Analysis, Second edition, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983.

    [14]

    F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978), A561-A563.

    [15]

    G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 17, Springer-Verlag, Berlin, 1991.

    [16]

    S. Mozes, Mixing of all orders of Lie groups actions, Inventiones Mathematicae, 107 (1992), 235-241.doi: 10.1007/BF01231889.

    [17]

    H. Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Mathematical Journal, 113 (2002), 133-192.doi: 10.1215/S0012-7094-02-11314-3.

    [18]

    V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Translated from the 1991 Russian original by Rachel Rowen, Pure and Applied Mathematics, 139, Academic Press, Inc., Boston, MA, 1994.

    [19]

    K. Schmidt, Dynamical Systems of Algebraic Origin, Progress in Mathematics, 128, Birkhäuser Verlag, Basel, 1995.

    [20]

    A. N. Starkov, Dynamical Systems on Homogeneous Spaces, Translated from the 1999 Russian original by the author, Translations of Mathematical Monographs, 190, American Mathematical Society, Providence, RI, 2000.

    [21]

    M. H. Taibleson, Fourier Analysis on Local Fields, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1975.

    [22]

    T.-H. D. Hui, Mixing and Certain Integral Point Problems on Semisimple Lie Groups, Ph.D Thesis, Yale University, 1998.

    [23]

    Z. J. Wang, Uniform pointwise bounds for matrix coefficients of unitary representations on semidirect products, J. Funct. Anal., 267 (2014), 15-79.doi: 10.1016/j.jfa.2014.03.014.

    [24]

    G. Warner, Harmonic Analysis on Semisimple Lie Groups I, Springer-Verlag, Berlin, 1972.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(169) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return