2016, 10: 81-111. doi: 10.3934/jmd.2016.10.81

Effective decay of multiple correlations in semidirect product actions

1. 

Department of Mathematics, University of Utah, 155 S 1400 E, Salt Lake City, UT 84112-0090, United States

Received  February 2014 Revised  February 2016 Published  April 2016

We prove effective decay of certain multiple correlation coefficients for measure preserving, mixing Weyl chamber actions of semidirect products of semisimple groups with $G$-vector spaces. These estimates provide decay for actions in split semisimple groups of higher rank.
Citation: Ioannis Konstantoulas. Effective decay of multiple correlations in semidirect product actions. Journal of Modern Dynamics, 2016, 10: 81-111. doi: 10.3934/jmd.2016.10.81
References:
[1]

M. B. Bekka, P. de la Harpe and A. Valette, Kazhdan's Property (T), Cambridge University Press, Cambridge, 2008. doi: 10.1017/CBO9780511542749.

[2]

M. B. Bekka and M. Mayer, Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces, London Mathematical Society Lecture Note Series, 269, Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511758898.

[3]

M. Björklund, M. Einsiedler and A. Gorodnik, Effective multiple mixing for semisimple groups,, in preparation., (). 

[4]

A. Borel, Linear Algebraic Groups, Second edition, Graduate Texts in Mathematics, 126, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0941-6.

[5]

M. Cowling, U. Haagerup and R. Howe, Almost $L^2$ matrix coefficients, J. Reiner Angew. Math., 387 (1988), 97-110.

[6]

D. Dolgopyat, Limit theorems for partially hyperbolic systems, Trans. Amer. Math. Soc., 356 (2004), 1637-1689. doi: 10.1090/S0002-9947-03-03335-X.

[7]

M. Einsiedler, G. Margulis and A. Venkatesh, Effective equidistribution for closed orbits of semisimple groups on homogeneous spaces, Invent. Math., 177 (2009), 137-212. doi: 10.1007/s00222-009-0177-7.

[8]

R. E. Howe and C. C. Moore, Asymptotic properties of unitary representations, J. Funct. Anal., 32 (1979), 72-96. doi: 10.1016/0022-1236(79)90078-8.

[9]

R. Howe and E. C. Tan, Non Abelian Harmonic Analysis, Universitext, Springer-Verlag, New York, 1992. doi: 10.1007/978-1-4613-9200-2.

[10]

J. E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975.

[11]

A. Katok and R. Spatzier, First cohomology of Anosov actions of higher rank Abelian groups and applications to rigidity, Inst. Hautes Études Sci. Publ. Math., 79 (1994), 131-156.

[12]

A. W. Knapp, Representation Theory of Semisimple Groups. An Overview Based on Examples, Princeton Landmarks in Mathematics, 36, Princeton University Press, Princeton, NJ, 1986.

[13]

S. Lang, Real Analysis, Second edition, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983.

[14]

F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978), A561-A563.

[15]

G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 17, Springer-Verlag, Berlin, 1991.

[16]

S. Mozes, Mixing of all orders of Lie groups actions, Inventiones Mathematicae, 107 (1992), 235-241. doi: 10.1007/BF01231889.

[17]

H. Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Mathematical Journal, 113 (2002), 133-192. doi: 10.1215/S0012-7094-02-11314-3.

[18]

V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Translated from the 1991 Russian original by Rachel Rowen, Pure and Applied Mathematics, 139, Academic Press, Inc., Boston, MA, 1994.

[19]

K. Schmidt, Dynamical Systems of Algebraic Origin, Progress in Mathematics, 128, Birkhäuser Verlag, Basel, 1995.

[20]

A. N. Starkov, Dynamical Systems on Homogeneous Spaces, Translated from the 1999 Russian original by the author, Translations of Mathematical Monographs, 190, American Mathematical Society, Providence, RI, 2000.

[21]

M. H. Taibleson, Fourier Analysis on Local Fields, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1975.

[22]

T.-H. D. Hui, Mixing and Certain Integral Point Problems on Semisimple Lie Groups, Ph.D Thesis, Yale University, 1998.

[23]

Z. J. Wang, Uniform pointwise bounds for matrix coefficients of unitary representations on semidirect products, J. Funct. Anal., 267 (2014), 15-79. doi: 10.1016/j.jfa.2014.03.014.

[24]

G. Warner, Harmonic Analysis on Semisimple Lie Groups I, Springer-Verlag, Berlin, 1972.

show all references

References:
[1]

M. B. Bekka, P. de la Harpe and A. Valette, Kazhdan's Property (T), Cambridge University Press, Cambridge, 2008. doi: 10.1017/CBO9780511542749.

[2]

M. B. Bekka and M. Mayer, Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces, London Mathematical Society Lecture Note Series, 269, Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511758898.

[3]

M. Björklund, M. Einsiedler and A. Gorodnik, Effective multiple mixing for semisimple groups,, in preparation., (). 

[4]

A. Borel, Linear Algebraic Groups, Second edition, Graduate Texts in Mathematics, 126, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0941-6.

[5]

M. Cowling, U. Haagerup and R. Howe, Almost $L^2$ matrix coefficients, J. Reiner Angew. Math., 387 (1988), 97-110.

[6]

D. Dolgopyat, Limit theorems for partially hyperbolic systems, Trans. Amer. Math. Soc., 356 (2004), 1637-1689. doi: 10.1090/S0002-9947-03-03335-X.

[7]

M. Einsiedler, G. Margulis and A. Venkatesh, Effective equidistribution for closed orbits of semisimple groups on homogeneous spaces, Invent. Math., 177 (2009), 137-212. doi: 10.1007/s00222-009-0177-7.

[8]

R. E. Howe and C. C. Moore, Asymptotic properties of unitary representations, J. Funct. Anal., 32 (1979), 72-96. doi: 10.1016/0022-1236(79)90078-8.

[9]

R. Howe and E. C. Tan, Non Abelian Harmonic Analysis, Universitext, Springer-Verlag, New York, 1992. doi: 10.1007/978-1-4613-9200-2.

[10]

J. E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975.

[11]

A. Katok and R. Spatzier, First cohomology of Anosov actions of higher rank Abelian groups and applications to rigidity, Inst. Hautes Études Sci. Publ. Math., 79 (1994), 131-156.

[12]

A. W. Knapp, Representation Theory of Semisimple Groups. An Overview Based on Examples, Princeton Landmarks in Mathematics, 36, Princeton University Press, Princeton, NJ, 1986.

[13]

S. Lang, Real Analysis, Second edition, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983.

[14]

F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978), A561-A563.

[15]

G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 17, Springer-Verlag, Berlin, 1991.

[16]

S. Mozes, Mixing of all orders of Lie groups actions, Inventiones Mathematicae, 107 (1992), 235-241. doi: 10.1007/BF01231889.

[17]

H. Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Mathematical Journal, 113 (2002), 133-192. doi: 10.1215/S0012-7094-02-11314-3.

[18]

V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Translated from the 1991 Russian original by Rachel Rowen, Pure and Applied Mathematics, 139, Academic Press, Inc., Boston, MA, 1994.

[19]

K. Schmidt, Dynamical Systems of Algebraic Origin, Progress in Mathematics, 128, Birkhäuser Verlag, Basel, 1995.

[20]

A. N. Starkov, Dynamical Systems on Homogeneous Spaces, Translated from the 1999 Russian original by the author, Translations of Mathematical Monographs, 190, American Mathematical Society, Providence, RI, 2000.

[21]

M. H. Taibleson, Fourier Analysis on Local Fields, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1975.

[22]

T.-H. D. Hui, Mixing and Certain Integral Point Problems on Semisimple Lie Groups, Ph.D Thesis, Yale University, 1998.

[23]

Z. J. Wang, Uniform pointwise bounds for matrix coefficients of unitary representations on semidirect products, J. Funct. Anal., 267 (2014), 15-79. doi: 10.1016/j.jfa.2014.03.014.

[24]

G. Warner, Harmonic Analysis on Semisimple Lie Groups I, Springer-Verlag, Berlin, 1972.

[1]

James Tanis. Exponential multiple mixing for some partially hyperbolic flows on products of $ {\rm{PSL}}(2, \mathbb{R})$. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 989-1006. doi: 10.3934/dcds.2018042

[2]

Matúš Dirbák. Minimal skew products with hypertransitive or mixing properties. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1657-1674. doi: 10.3934/dcds.2012.32.1657

[3]

Ralf Spatzier, Lei Yang. Exponential mixing and smooth classification of commuting expanding maps. Journal of Modern Dynamics, 2017, 11: 263-312. doi: 10.3934/jmd.2017012

[4]

Krzysztof Frączek, Leonid Polterovich. Growth and mixing. Journal of Modern Dynamics, 2008, 2 (2) : 315-338. doi: 10.3934/jmd.2008.2.315

[5]

Davit Martirosyan. Exponential mixing for the white-forced damped nonlinear wave equation. Evolution Equations and Control Theory, 2014, 3 (4) : 645-670. doi: 10.3934/eect.2014.3.645

[6]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[7]

Xuhui Peng, Jianhua Huang, Yan Zheng. Exponential mixing for the fractional Magneto-Hydrodynamic equations with degenerate stochastic forcing. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4479-4506. doi: 10.3934/cpaa.2020204

[8]

Asaf Katz. On mixing and sparse ergodic theorems. Journal of Modern Dynamics, 2021, 17: 1-32. doi: 10.3934/jmd.2021001

[9]

Lidong Wang, Xiang Wang, Fengchun Lei, Heng Liu. Mixing invariant extremal distributional chaos. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6533-6538. doi: 10.3934/dcds.2016082

[10]

A. Crannell. A chaotic, non-mixing subshift. Conference Publications, 1998, 1998 (Special) : 195-202. doi: 10.3934/proc.1998.1998.195

[11]

Zhi Lin, Katarína Boďová, Charles R. Doering. Models & measures of mixing & effective diffusion. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 259-274. doi: 10.3934/dcds.2010.28.259

[12]

Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817

[13]

Nir Avni. Spectral and mixing properties of actions of amenable groups. Electronic Research Announcements, 2005, 11: 57-63.

[14]

Richard Miles, Thomas Ward. A directional uniformity of periodic point distribution and mixing. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1181-1189. doi: 10.3934/dcds.2011.30.1181

[15]

Hadda Hmili. Non topologically weakly mixing interval exchanges. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1079-1091. doi: 10.3934/dcds.2010.27.1079

[16]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[17]

Dmitri Scheglov. Absence of mixing for smooth flows on genus two surfaces. Journal of Modern Dynamics, 2009, 3 (1) : 13-34. doi: 10.3934/jmd.2009.3.13

[18]

Jean René Chazottes, F. Durand. Local rates of Poincaré recurrence for rotations and weak mixing. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 175-183. doi: 10.3934/dcds.2005.12.175

[19]

Jian Li. Localization of mixing property via Furstenberg families. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 725-740. doi: 10.3934/dcds.2015.35.725

[20]

Oliver Knill. Singular continuous spectrum and quantitative rates of weak mixing. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 33-42. doi: 10.3934/dcds.1998.4.33

2020 Impact Factor: 0.848

Metrics

  • PDF downloads (152)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]