-
Previous Article
Approximation of points in the plane by generic lattice orbits
- JMD Home
- This Volume
-
Next Article
On spectra of Koopman, groupoid and quasi-regular representations
Differentiable Rigidity for quasiperiodic cocycles in compact Lie groups
Imperial College London, South, Kensington Campus, 180 Queen’s Gate, Huxley Building, London SW7 2AZ, UK |
We study close-to-constants quasiperiodic cocycles in $\mathbb{T} ^{d} \times G$, where $d \in \mathbb{N} ^{*} $ and $G$ is a compact Lie group, under the assumption that the rotation in the basis satisfies a Diophantine condition. We prove differentiable rigidity for such cocycles: if such a cocycle is measurably conjugate to a constant one satisfying a Diophantine condition with respect to the rotation, then it is $C^{\infty}$-conjugate to it, and the KAM scheme actually produces a conjugation. We also derive a global differentiable rigidity theorem, assuming the convergence of the renormalization scheme for such dynamical systems.
References:
[1] |
A. Avila and R. Krikorian,
Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles, Ann. of Math. (2), 164 (2006), 911-940.
doi: 10.4007/annals.2006.164.911. |
[2] |
A. Avila, B. Fayad and R. Krikorian,
A KAM scheme for SL(2.$\mathbb{R} $) cocycles with Liouvillean frequencies, Geom. Funct. Anal., 21 (2011), 1001-1019.
doi: 10.1007/s00039-011-0135-6. |
[3] |
D. Bump, Lie Groups, Graduate Texts in Mathematics, 225, Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-4094-3. |
[4] |
J. Dieudonné, Eléments d'Analyse, 5, Gauthier-Villars, 1975. |
[5] |
J. J. Duistermaat and J. A. C. Kolk, Lie Groups, Universitext, Springer-Verlag, Berlin, 2000.
doi: 10.1007/978-3-642-56936-4. |
[6] |
L. H. Eliasson,
Ergodic skew-systems on Td × SO(3.R), Ergodic Theory Dynam. Systems, 22 (2002), 1429-1449.
doi: 10.1017/S0143385702000998. |
[7] |
B. Fayad and R. Krikorian,
Rigidity results for quasiperiodic SL(2.$\mathbb{R} $)-cocycles, J. Mod. Dyn., 3 (2009), 497-510.
doi: 10.3934/jmd.2009.3.479. |
[8] |
H. Furstenberg,
Strict ergodicity and transformations of the torus, Amer. J. Math., 83 (1961), 573-601.
doi: 10.2307/2372899. |
[9] |
S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962. |
[10] |
X. Hou and J. You,
Local rigidity of reducibility of analytic quasi-periodic cocycles on U(n), Discrete Contin. Dyn. Syst., 24 (2009), 441-454.
doi: 10.3934/dcds.2009.24.441. |
[11] |
N. Karaliolios, Invariant distributions for quasiperiodic cocycles in $\mathbb{T}^d $ × SU(2), arXiv: 1407.4763, 2014. |
[12] |
N. Karaliolios, Continuous spectrum or measurable reducibility for quasiperiodic cocycles in $\mathbb{T}^d $ × SU(2), arXiv: 1512.00057, 2015. |
[13] |
N. Karaliolios, Global aspects of the reducibility of quasiperiodic cocycles in semisimple compact Lie groups, Mém. Soc. Math. Fr. (N.S.), No. 146 (2016), 4+ⅱ+200 pp. |
[14] |
A. Kolmogoroff,
On inequalities between the upper bounds of the successive derivatives of an arbitrary function on an infinite interval, Amer. Math. Soc. Translation, 1949 (1949), 19 pp..
|
[15] |
R. Krikorian, Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts, Astérisque, (1999), ⅵ+216 pp. |
[16] |
R. Krikorian,
Global density of reducible quasi-periodic cocycles on T1 × SU(2), Ann. of Math. (2), 154 (2001), 269-326.
doi: 10.2307/3062098. |
show all references
References:
[1] |
A. Avila and R. Krikorian,
Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles, Ann. of Math. (2), 164 (2006), 911-940.
doi: 10.4007/annals.2006.164.911. |
[2] |
A. Avila, B. Fayad and R. Krikorian,
A KAM scheme for SL(2.$\mathbb{R} $) cocycles with Liouvillean frequencies, Geom. Funct. Anal., 21 (2011), 1001-1019.
doi: 10.1007/s00039-011-0135-6. |
[3] |
D. Bump, Lie Groups, Graduate Texts in Mathematics, 225, Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-4094-3. |
[4] |
J. Dieudonné, Eléments d'Analyse, 5, Gauthier-Villars, 1975. |
[5] |
J. J. Duistermaat and J. A. C. Kolk, Lie Groups, Universitext, Springer-Verlag, Berlin, 2000.
doi: 10.1007/978-3-642-56936-4. |
[6] |
L. H. Eliasson,
Ergodic skew-systems on Td × SO(3.R), Ergodic Theory Dynam. Systems, 22 (2002), 1429-1449.
doi: 10.1017/S0143385702000998. |
[7] |
B. Fayad and R. Krikorian,
Rigidity results for quasiperiodic SL(2.$\mathbb{R} $)-cocycles, J. Mod. Dyn., 3 (2009), 497-510.
doi: 10.3934/jmd.2009.3.479. |
[8] |
H. Furstenberg,
Strict ergodicity and transformations of the torus, Amer. J. Math., 83 (1961), 573-601.
doi: 10.2307/2372899. |
[9] |
S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962. |
[10] |
X. Hou and J. You,
Local rigidity of reducibility of analytic quasi-periodic cocycles on U(n), Discrete Contin. Dyn. Syst., 24 (2009), 441-454.
doi: 10.3934/dcds.2009.24.441. |
[11] |
N. Karaliolios, Invariant distributions for quasiperiodic cocycles in $\mathbb{T}^d $ × SU(2), arXiv: 1407.4763, 2014. |
[12] |
N. Karaliolios, Continuous spectrum or measurable reducibility for quasiperiodic cocycles in $\mathbb{T}^d $ × SU(2), arXiv: 1512.00057, 2015. |
[13] |
N. Karaliolios, Global aspects of the reducibility of quasiperiodic cocycles in semisimple compact Lie groups, Mém. Soc. Math. Fr. (N.S.), No. 146 (2016), 4+ⅱ+200 pp. |
[14] |
A. Kolmogoroff,
On inequalities between the upper bounds of the successive derivatives of an arbitrary function on an infinite interval, Amer. Math. Soc. Translation, 1949 (1949), 19 pp..
|
[15] |
R. Krikorian, Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts, Astérisque, (1999), ⅵ+216 pp. |
[16] |
R. Krikorian,
Global density of reducible quasi-periodic cocycles on T1 × SU(2), Ann. of Math. (2), 154 (2001), 269-326.
doi: 10.2307/3062098. |
[1] |
Xuanji Hou, Lei Jiao. On local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3125-3152. doi: 10.3934/dcds.2016.36.3125 |
[2] |
Xuanji Hou, Jiangong You. Local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 441-454. doi: 10.3934/dcds.2009.24.441 |
[3] |
Jinhao Liang. Positive Lyapunov exponent for a class of quasi-periodic cocycles. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1361-1387. doi: 10.3934/dcds.2020080 |
[4] |
Zhichao Ma, Junxiang Xu. A KAM theorem for quasi-periodic non-twist mappings and its application. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022013 |
[5] |
Kai Tao. Strong Birkhoff ergodic theorem for subharmonic functions with irrational shift and its application to analytic quasi-periodic cocycles. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1495-1533. doi: 10.3934/dcds.2021162 |
[6] |
Danijela Damjanovic and Anatole Katok. Local rigidity of actions of higher rank abelian groups and KAM method. Electronic Research Announcements, 2004, 10: 142-154. |
[7] |
Harry Crimmins. Stability of hyperbolic Oseledets splittings for quasi-compact operator cocycles. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2795-2857. doi: 10.3934/dcds.2022001 |
[8] |
Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467 |
[9] |
Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006 |
[10] |
Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75 |
[11] |
Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537 |
[12] |
Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104 |
[13] |
Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585 |
[14] |
Alessandro Fonda, Antonio J. Ureña. Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 169-192. doi: 10.3934/dcds.2011.29.169 |
[15] |
Xavier Blanc, Claude Le Bris. Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5 (1) : 1-29. doi: 10.3934/nhm.2010.5.1 |
[16] |
A. Kononenko. Twisted cocycles and rigidity problems. Electronic Research Announcements, 1995, 1: 26-34. |
[17] |
Felipe A. Ramírez. Cocycles over higher-rank abelian actions on quotients of semisimple Lie groups. Journal of Modern Dynamics, 2009, 3 (3) : 335-357. doi: 10.3934/jmd.2009.3.335 |
[18] |
Masayuki Asaoka. Local rigidity of homogeneous actions of parabolic subgroups of rank-one Lie groups. Journal of Modern Dynamics, 2015, 9: 191-201. doi: 10.3934/jmd.2015.9.191 |
[19] |
Danijela Damjanović. Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions. Journal of Modern Dynamics, 2007, 1 (4) : 665-688. doi: 10.3934/jmd.2007.1.665 |
[20] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 31-53. doi: 10.3934/dcdsb.2019171 |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]