-
Previous Article
The gap distribution of directions in some Schottky groups
- JMD Home
- This Volume
-
Next Article
An effective version of Katok's horseshoe theorem for conservative C2 surface diffeomorphisms
Logarithm laws for unipotent flows on hyperbolic manifolds
Department of Mathematics, Boston College, Chestnut Hill, MA 02467-3806, USA |
We prove logarithm laws for unipotent flows on non-compact finite-volume hyperbolic manifolds. Our method depends on the estimate of norms of certain incomplete Eisenstein series.
References:
[1] |
L. Ahlfors,
On the fixed points of Möbius tranformations in $\mathbb{R}^{n}$, Annales Academiae, 10 (1985), 15-27.
doi: 10.5186/aasfm.1985.1005. |
[2] |
J. Athreya,
Logarithm laws and shrinking target properties, Proc. Indian Acad. Sci. Math. Sci., 119 (2009), 541-557.
doi: 10.1007/s12044-009-0044-x. |
[3] |
J. Athreya,
Cusp excursions on parameter spaces, J. London Math. Soc., 87 (2013), 741-765.
doi: 10.1112/jlms/jds074. |
[4] |
J. Athreya and G. Margulis,
Logarithm laws for unipotent flows. Ⅰ, J. Mod. Dyn., 3 (2009), 359-378.
doi: 10.3934/jmd.2009.3.359. |
[5] |
J. Athreya and G. Margulis,
Logarithm laws for unipotent flows. Ⅱ, J. Mod. Dyn., 11 (2017), 1-16.
doi: 10.3934/jmd.2017001. |
[6] |
A. Borel,
Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem, Differential J. Geometry, 6 (1972), 543-560.
doi: 10.4310/jdg/1214430642. |
[7] |
J. Elstrodt, F. Grunewald and J. Mennicke,
Vahlen's group of Clifford matrices and spingroups, Math. Z., 196 (1987), 369-390.
doi: 10.1007/BF01200359. |
[8] |
J. Elstrodt, F. Grunewald and J. Mennicke,
Kloosterman sums for Clifford algebras and a lower bound for the positive eigenvalues of the Laplacian for congruence subgroups acting on hyperbolic spaces, Invent. Math., 101 (1990), 641-685.
doi: 10.1007/BF01231519. |
[9] |
H. Garland and M. S. Raghunathan,
Fundamental domains for lattices in $(\mathbb{R})$-rank 1 semi-simple groups, Ann. of Math., 92 (1970), 279-326.
doi: 10.2307/1970838. |
[10] |
P. Garrett, Harmonic analysis on spheres, http://www.math.umn.edu/~garrett/m/mfms/notes_2013-14/09_spheres.pdf. |
[11] |
V. Gritsenko,
Arithmetic of quaternions and Eisenstein Series, translation in J. Soviet Math., 52 (1990), 3056-3063.
doi: 10.1007/BF02342923. |
[12] |
D. Kelmer and A. Mohammadi,
Logarithm laws for one parameter unipotent flows, Geom. Funct. Anal., 22 (2012), 756-784.
doi: 10.1007/s00039-012-0181-8. |
[13] |
D. Y. Kleinbock and G. A. Margulis,
Logarithm laws for flows on homogeneous spaces, Invent. Math., 138 (1999), 451-494.
doi: 10.1007/s002220050350. |
[14] |
A. W. Knapp, Lie Groups Beyond an Introduction, Second Edition, Progress in Mathematics, vol. 140, Birkhäuser, Boston, 2002. |
[15] |
R. P. Langlands, On the Functional Equations Satisfied by Eisenstein Series, Lecture Notes in Math., SLN 544, Berlin-Heidelberg-New York, 1976. |
[16] |
J. R. Parker, Hyperbolic spaces, Jyväskylä Lectures in Mathematics 2, 2008. |
[17] |
C. D. Sogge,
Oscillatory integrals and spherical harmonics, Duke Math. J., 53 (1986), 43-65.
doi: 10.1215/S0012-7094-86-05303-2. |
[18] |
D. Sullivan,
Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics, Acta Math., 149 (1982), 215-237.
doi: 10.1007/BF02392354. |
[19] |
T. Ton-That,
Lie group representations and harmonic polynomials of a matrix variable, Trans. Amer. Math. Soc., 216 (1976), 1-46.
doi: 10.1090/S0002-9947-1976-0399366-1. |
[20] |
G. Warner, Selberg's trace formula for non-uniform lattices: The $\mathbb{R}$-rank one case, in Studies in Algebra and Number Theory, Adv. in Math. Suppl. Stud., 6, Academic Press, New York-London, 1979, 1-142. |
show all references
References:
[1] |
L. Ahlfors,
On the fixed points of Möbius tranformations in $\mathbb{R}^{n}$, Annales Academiae, 10 (1985), 15-27.
doi: 10.5186/aasfm.1985.1005. |
[2] |
J. Athreya,
Logarithm laws and shrinking target properties, Proc. Indian Acad. Sci. Math. Sci., 119 (2009), 541-557.
doi: 10.1007/s12044-009-0044-x. |
[3] |
J. Athreya,
Cusp excursions on parameter spaces, J. London Math. Soc., 87 (2013), 741-765.
doi: 10.1112/jlms/jds074. |
[4] |
J. Athreya and G. Margulis,
Logarithm laws for unipotent flows. Ⅰ, J. Mod. Dyn., 3 (2009), 359-378.
doi: 10.3934/jmd.2009.3.359. |
[5] |
J. Athreya and G. Margulis,
Logarithm laws for unipotent flows. Ⅱ, J. Mod. Dyn., 11 (2017), 1-16.
doi: 10.3934/jmd.2017001. |
[6] |
A. Borel,
Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem, Differential J. Geometry, 6 (1972), 543-560.
doi: 10.4310/jdg/1214430642. |
[7] |
J. Elstrodt, F. Grunewald and J. Mennicke,
Vahlen's group of Clifford matrices and spingroups, Math. Z., 196 (1987), 369-390.
doi: 10.1007/BF01200359. |
[8] |
J. Elstrodt, F. Grunewald and J. Mennicke,
Kloosterman sums for Clifford algebras and a lower bound for the positive eigenvalues of the Laplacian for congruence subgroups acting on hyperbolic spaces, Invent. Math., 101 (1990), 641-685.
doi: 10.1007/BF01231519. |
[9] |
H. Garland and M. S. Raghunathan,
Fundamental domains for lattices in $(\mathbb{R})$-rank 1 semi-simple groups, Ann. of Math., 92 (1970), 279-326.
doi: 10.2307/1970838. |
[10] |
P. Garrett, Harmonic analysis on spheres, http://www.math.umn.edu/~garrett/m/mfms/notes_2013-14/09_spheres.pdf. |
[11] |
V. Gritsenko,
Arithmetic of quaternions and Eisenstein Series, translation in J. Soviet Math., 52 (1990), 3056-3063.
doi: 10.1007/BF02342923. |
[12] |
D. Kelmer and A. Mohammadi,
Logarithm laws for one parameter unipotent flows, Geom. Funct. Anal., 22 (2012), 756-784.
doi: 10.1007/s00039-012-0181-8. |
[13] |
D. Y. Kleinbock and G. A. Margulis,
Logarithm laws for flows on homogeneous spaces, Invent. Math., 138 (1999), 451-494.
doi: 10.1007/s002220050350. |
[14] |
A. W. Knapp, Lie Groups Beyond an Introduction, Second Edition, Progress in Mathematics, vol. 140, Birkhäuser, Boston, 2002. |
[15] |
R. P. Langlands, On the Functional Equations Satisfied by Eisenstein Series, Lecture Notes in Math., SLN 544, Berlin-Heidelberg-New York, 1976. |
[16] |
J. R. Parker, Hyperbolic spaces, Jyväskylä Lectures in Mathematics 2, 2008. |
[17] |
C. D. Sogge,
Oscillatory integrals and spherical harmonics, Duke Math. J., 53 (1986), 43-65.
doi: 10.1215/S0012-7094-86-05303-2. |
[18] |
D. Sullivan,
Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics, Acta Math., 149 (1982), 215-237.
doi: 10.1007/BF02392354. |
[19] |
T. Ton-That,
Lie group representations and harmonic polynomials of a matrix variable, Trans. Amer. Math. Soc., 216 (1976), 1-46.
doi: 10.1090/S0002-9947-1976-0399366-1. |
[20] |
G. Warner, Selberg's trace formula for non-uniform lattices: The $\mathbb{R}$-rank one case, in Studies in Algebra and Number Theory, Adv. in Math. Suppl. Stud., 6, Academic Press, New York-London, 1979, 1-142. |
[1] |
Jayadev S. Athreya, Gregory A. Margulis. Logarithm laws for unipotent flows, Ⅱ. Journal of Modern Dynamics, 2017, 11: 1-16. doi: 10.3934/jmd.2017001 |
[2] |
Jayadev S. Athreya, Gregory A. Margulis. Logarithm laws for unipotent flows, I. Journal of Modern Dynamics, 2009, 3 (3) : 359-378. doi: 10.3934/jmd.2009.3.359 |
[3] |
J. S. Athreya, Anish Ghosh, Amritanshu Prasad. Ultrametric logarithm laws I. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 337-348. doi: 10.3934/dcdss.2009.2.337 |
[4] |
Li-Xin Zhang. On the laws of the iterated logarithm under sub-linear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (4) : 409-460. doi: 10.3934/puqr.2021020 |
[5] |
Xiaofan Guo, Shan Li, Xinpeng Li. On the laws of the iterated logarithm with mean-uncertainty under sublinear expectations. Probability, Uncertainty and Quantitative Risk, 2022, 7 (1) : 1-12. doi: 10.3934/puqr.2022001 |
[6] |
Siyuan Tang. New time-changes of unipotent flows on quotients of Lorentz groups. Journal of Modern Dynamics, 2022, 18: 13-67. doi: 10.3934/jmd.2022002 |
[7] |
Maria José Pacifico, Fan Yang. Hitting times distribution and extreme value laws for semi-flows. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5861-5881. doi: 10.3934/dcds.2017255 |
[8] |
Chihurn Kim, Dong Han Kim. On the law of logarithm of the recurrence time. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 581-587. doi: 10.3934/dcds.2004.10.581 |
[9] |
Armengol Gasull, Francesc Mañosas. Subseries and signed series. Communications on Pure and Applied Analysis, 2019, 18 (1) : 479-492. doi: 10.3934/cpaa.2019024 |
[10] |
Santos González, Llorenç Huguet, Consuelo Martínez, Hugo Villafañe. Discrete logarithm like problems and linear recurring sequences. Advances in Mathematics of Communications, 2013, 7 (2) : 187-195. doi: 10.3934/amc.2013.7.187 |
[11] |
Yongjiang Guo, Yuantao Song. The (functional) law of the iterated logarithm of the sojourn time for a multiclass queue. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1049-1076. doi: 10.3934/jimo.2018192 |
[12] |
María Jesús Carro, Carlos Domingo-Salazar. The return times property for the tail on logarithm-type spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2065-2078. doi: 10.3934/dcds.2018084 |
[13] |
Cheng Zheng. Sparse equidistribution of unipotent orbits in finite-volume quotients of $\text{PSL}(2,\mathbb R)$. Journal of Modern Dynamics, 2016, 10: 1-21. doi: 10.3934/jmd.2016.10.1 |
[14] |
Constantine M. Dafermos. Hyperbolic balance laws with relaxation. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4271-4285. doi: 10.3934/dcds.2016.36.4271 |
[15] |
Jon Chaika, Rodrigo Treviño. Logarithmic laws and unique ergodicity. Journal of Modern Dynamics, 2017, 11: 563-588. doi: 10.3934/jmd.2017022 |
[16] |
Avner Friedman. Conservation laws in mathematical biology. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081 |
[17] |
Mauro Garavello. A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565 |
[18] |
Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010 |
[19] |
Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159 |
[20] |
Ferenc A. Bartha, Hans Z. Munthe-Kaas. Computing of B-series by automatic differentiation. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 903-914. doi: 10.3934/dcds.2014.34.903 |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]