-
Previous Article
Joining measures for horocycle flows on abelian covers
- JMD Home
- This Volume
-
Next Article
A quantitative Oppenheim theorem for generic ternary quadratic forms
Values of random polynomials at integer points
1. | Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195, USA |
2. | Department of Mathematics, Yale University, Box 208283, New Haven, CT 06520, USA |
Using classical results of Rogers [
References:
[1] |
J. S. Athreya,
Random affine lattices, Contemp. Math., 639 (2015), 160-174.
|
[2] |
J. S. Athreya and G. A. Margulis,
Logarithm laws for unipotent flows. I, J. Mod. Dyn., 3 (2009), 359-378.
doi: 10.3934/jmd.2009.3.359. |
[3] |
J. N. Bernstein,
Analytic continuation of generalized functions with respect to a parameter, Funkcional. Anal. i Priložen., 6 (1972), 26-40.
|
[4] |
J. Bourgain,
A quantitative Oppenheim theorem for generic diagonal quadratic forms, Israel J. Math., 215 (2016), 503-512.
doi: 10.1007/s11856-016-1385-7. |
[5] |
A. Chambert-Loir and Y. Tschinkel,
Igusa integrals and volume asymptotics in analytic and adelic geometry, Confluentes Math., 2 (2010), 351-429.
doi: 10.1142/S1793744210000223. |
[6] |
A. Eskin, G. Margulis and S. Mozes,
Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math., 147 (1998), 93-141.
doi: 10.2307/120984. |
[7] |
A. Eskin, G. Margulis and S. Mozes,
Quadratic forms of signature (2, 2) and eigenvalue spacings on rectangular 2-tori, Ann. of Math., 161 (2005), 679-725.
doi: 10.4007/annals.2005.161.679. |
[8] |
A. Ghosh, A. Gorodnik and A. Nevo, Optimal density for values of generic polynomial maps, arXiv:1801.01027, 2018. |
[9] |
A. Ghosh and D. Kelmer,
A quantitative Oppenheim theorem for generic ternary quadratic forms, J. Mod. Dyn., 12 (2018), 1-12.
doi: 10.3934/jmd.2018001. |
[10] |
G. Margulis,
Formes quadratiques indéfinies et flots unipotents sur les spaces homogénes, C. R. Acad. Sci. Paris Ser. I, 304 (1987), 249-253.
|
[11] |
A. Oppenheim,
The minima of indefinite quaternary quadratic forms, Proc. Nat. Acad. Sci. U.S.A., 15 (1929), 724-727.
|
[12] |
C. A. Rogers,
The number of lattice points in a set, Proc. London Math. Soc., 6 (1956), 305-320.
|
[13] |
W. Schmidt,
A metrical theorem in geometry of numbers, Trans. Amer. Math. Soc., 95 (1960), 516-529.
doi: 10.1090/S0002-9947-1960-0117222-9. |
[14] |
C. L. Siegel,
A mean value theorem in geometry of numbers, Ann. Math., 46 (1945), 340-347.
doi: 10.2307/1969027. |
[15] |
J. M. VanderKam,
Values at integers of homogeneous polynomials, Duke Math. J., 97 (1999), 379-412.
doi: 10.1215/S0012-7094-99-09716-8. |
show all references
References:
[1] |
J. S. Athreya,
Random affine lattices, Contemp. Math., 639 (2015), 160-174.
|
[2] |
J. S. Athreya and G. A. Margulis,
Logarithm laws for unipotent flows. I, J. Mod. Dyn., 3 (2009), 359-378.
doi: 10.3934/jmd.2009.3.359. |
[3] |
J. N. Bernstein,
Analytic continuation of generalized functions with respect to a parameter, Funkcional. Anal. i Priložen., 6 (1972), 26-40.
|
[4] |
J. Bourgain,
A quantitative Oppenheim theorem for generic diagonal quadratic forms, Israel J. Math., 215 (2016), 503-512.
doi: 10.1007/s11856-016-1385-7. |
[5] |
A. Chambert-Loir and Y. Tschinkel,
Igusa integrals and volume asymptotics in analytic and adelic geometry, Confluentes Math., 2 (2010), 351-429.
doi: 10.1142/S1793744210000223. |
[6] |
A. Eskin, G. Margulis and S. Mozes,
Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math., 147 (1998), 93-141.
doi: 10.2307/120984. |
[7] |
A. Eskin, G. Margulis and S. Mozes,
Quadratic forms of signature (2, 2) and eigenvalue spacings on rectangular 2-tori, Ann. of Math., 161 (2005), 679-725.
doi: 10.4007/annals.2005.161.679. |
[8] |
A. Ghosh, A. Gorodnik and A. Nevo, Optimal density for values of generic polynomial maps, arXiv:1801.01027, 2018. |
[9] |
A. Ghosh and D. Kelmer,
A quantitative Oppenheim theorem for generic ternary quadratic forms, J. Mod. Dyn., 12 (2018), 1-12.
doi: 10.3934/jmd.2018001. |
[10] |
G. Margulis,
Formes quadratiques indéfinies et flots unipotents sur les spaces homogénes, C. R. Acad. Sci. Paris Ser. I, 304 (1987), 249-253.
|
[11] |
A. Oppenheim,
The minima of indefinite quaternary quadratic forms, Proc. Nat. Acad. Sci. U.S.A., 15 (1929), 724-727.
|
[12] |
C. A. Rogers,
The number of lattice points in a set, Proc. London Math. Soc., 6 (1956), 305-320.
|
[13] |
W. Schmidt,
A metrical theorem in geometry of numbers, Trans. Amer. Math. Soc., 95 (1960), 516-529.
doi: 10.1090/S0002-9947-1960-0117222-9. |
[14] |
C. L. Siegel,
A mean value theorem in geometry of numbers, Ann. Math., 46 (1945), 340-347.
doi: 10.2307/1969027. |
[15] |
J. M. VanderKam,
Values at integers of homogeneous polynomials, Duke Math. J., 97 (1999), 379-412.
doi: 10.1215/S0012-7094-99-09716-8. |
[1] |
Jiyoung Han. Quantitative oppenheim conjecture for $ S $-arithmetic quadratic forms of rank $ 3 $ and $ 4 $. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2205-2225. doi: 10.3934/dcds.2020359 |
[2] |
Alex Eskin, Gregory Margulis and Shahar Mozes. On a quantitative version of the Oppenheim conjecture. Electronic Research Announcements, 1995, 1: 124-130. |
[3] |
Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4123-4155. doi: 10.3934/dcds.2013.33.4123 |
[4] |
Uri Shapira. On a generalization of Littlewood's conjecture. Journal of Modern Dynamics, 2009, 3 (3) : 457-477. doi: 10.3934/jmd.2009.3.457 |
[5] |
Gamaliel Blé, Carlos Cabrera. A generalization of Douady's formula. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6183-6188. doi: 10.3934/dcds.2017267 |
[6] |
Yakov Varshavsky. A proof of a generalization of Deligne's conjecture. Electronic Research Announcements, 2005, 11: 78-88. |
[7] |
Marco Cicalese, Matthias Ruf. Discrete spin systems on random lattices at the bulk scaling. Discrete and Continuous Dynamical Systems - S, 2017, 10 (1) : 101-117. doi: 10.3934/dcdss.2017006 |
[8] |
Adriano Regis Rodrigues, César Castilho, Jair Koiller. Vortex pairs on a triaxial ellipsoid and Kimura's conjecture. Journal of Geometric Mechanics, 2018, 10 (2) : 189-208. doi: 10.3934/jgm.2018007 |
[9] |
Changfeng Gui. On some problems related to de Giorgi’s conjecture. Communications on Pure and Applied Analysis, 2003, 2 (1) : 101-106. doi: 10.3934/cpaa.2003.2.101 |
[10] |
Laurent Desvillettes, Clément Mouhot, Cédric Villani. Celebrating Cercignani's conjecture for the Boltzmann equation. Kinetic and Related Models, 2011, 4 (1) : 277-294. doi: 10.3934/krm.2011.4.277 |
[11] |
Chengzhi Li, Changjian Liu. A proof of a Dumortier-Roussarie's conjecture. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022095 |
[12] |
Francisco Brito, Maria Luiza Leite, Vicente de Souza Neto. Liouville's formula under the viewpoint of minimal surfaces. Communications on Pure and Applied Analysis, 2004, 3 (1) : 41-51. doi: 10.3934/cpaa.2004.3.41 |
[13] |
Marius Mitrea. On Bojarski's index formula for nonsmooth interfaces. Electronic Research Announcements, 1999, 5: 40-46. |
[14] |
Wenxiang Sun, Xueting Tian. Dominated splitting and Pesin's entropy formula. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1421-1434. doi: 10.3934/dcds.2012.32.1421 |
[15] |
Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195 |
[16] |
Yong Li, Hongren Wang, Xue Yang. Fink type conjecture on affine-periodic solutions and Levinson's conjecture to Newtonian systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2607-2623. doi: 10.3934/dcdsb.2018123 |
[17] |
Xijun Hu, Penghui Wang. Hill-type formula and Krein-type trace formula for $S$-periodic solutions in ODEs. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 763-784. doi: 10.3934/dcds.2016.36.763 |
[18] |
Amit Einav. On Villani's conjecture concerning entropy production for the Kac Master equation. Kinetic and Related Models, 2011, 4 (2) : 479-497. doi: 10.3934/krm.2011.4.479 |
[19] |
Richard Moeckel. A proof of Saari's conjecture for the three-body problem in $\R^d$. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 631-646. doi: 10.3934/dcdss.2008.1.631 |
[20] |
Jan Hladký, Diana Piguet, Miklós Simonovits, Maya Stein, Endre Szemerédi. The approximate Loebl-Komlós-Sós conjecture and embedding trees in sparse graphs. Electronic Research Announcements, 2015, 22: 1-11. doi: 10.3934/era.2015.22.1 |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]