\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Joining measures for horocycle flows on abelian covers

Abstract Full Text(HTML) Related Papers Cited by
  • A celebrated result of Ratner from the eighties says that two horocycle flows on hyperbolic surfaces of finite area are either the same up to algebraic change of coordinates, or they have no non-trivial joinings. Recently, Mohammadi and Oh extended Ratner's theorem to horocycle flows on hyperbolic surfaces of infinite area but finite genus. In this paper, we present the first joining classification result of a horocycle flow on a hyperbolic surface of infinite genus: a $\mathbb{Z}$ or $\mathbb{Z}^2$-cover of a general compact hyperbolic surface.

    Mathematics Subject Classification: Primary: 37A17, 37D40; Secondary: 37D35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. Babillot, On the classification of invariant measures for horosphere foliations on nilpotent covers of negatively curved manifolds, in Random Walks and Geometry (ed. Kaimanovich), Walter de Gruyter, Berlin, 2004,319-335.
    [2] M. Babillot and F. Ledrappier, Lalley's theorem on period orbits of hyperbolic flows, Ergod. Th. Dynam. Syst., 18 (1998), 17-39.  doi: 10.1017/S0143385798100330.
    [3] M. Babillot and F. Ledrappier, Geodesic paths and horocycle flow on abelian covers, in Lie Groups and Ergodic Theory (Mumbai, 1996), Tata Inst. Fund. Res. Stud. Math., 14, Tata Inst. Fund. Res., Bombay, 1998, 1-32.
    [4] Y. Benoist and J.-F. Quint, Stationary measures and invariant subsets of homogeneous spaces, Ann. of Math., 174 (2011), 1111-1162.  doi: 10.4007/annals.2011.174.2.8.
    [5] Y. Benoist and H. Oh, Fuchsian groups and compact hyperbolic surfaces, Enseign. Math., 62 (2016), 189-198.  doi: 10.4171/LEM/62-1/2-11.
    [6] R. Bowen and B. Marcus, Unique ergodicity for horocycle foliations, Israel J. Math., 26 (1977), 43-67.  doi: 10.1007/BF03007655.
    [7] R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202.  doi: 10.1007/BF01389848.
    [8] R. Bowen and C. Series, Markov maps associated with Fuchsian groups, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 153-170. 
    [9] M. Burger, Horocycle flow on geometrically finite surfaces, Duke Math. J., 61 (1990), 779-803.  doi: 10.1215/S0012-7094-90-06129-0.
    [10] M. Denker and W. Philipp, Approximation by Brownian motion for Gibbs measures and flows under a function, Ergod. Th. Dynam. Syst., 4 (1984), 541-552. 
    [11] H. Furstenberg, The unique ergodicity of the horocycle flow, in Recent Advances in Topological Dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund), Lecture Notes in Math., 318, Springer, Berlin, 1972, 95-115.
    [12] L. Flaminio and R. J. Spatzier, Ratner's rigidity theorem for geometrically finite Fuchsian groups, in Dynamical Systems (College Park, MD, 1986-87), Lecture Notes in Math., 1342, Springer, Berlin, 1988,180-195.
    [13] L. Flaminio and R. Spatzier, Geometrically finite groups, Patterson-Sullivan measures and Ratner's rigidity theorem, Invent. Math., 99 (1990), 601-626.  doi: 10.1007/BF01234433.
    [14] R. A. Johnson, Atomic and nonatomic measures, Proc. Amer. Math. Soc., 25 (1970), 650-655.  doi: 10.1090/S0002-9939-1970-0279266-8.
    [15] V. A. Kaimanovich, Ergodic properties of the horocycle flow and classification of Fuchsian groups, J. Dynam. Control Systems, 6 (2000), 21-56.  doi: 10.1023/A:1009517621605.
    [16] A. Katsuda and T. Sunada, Closed orbits in homology classes, Inst. Hautes études Sci. Publ. Math., 71 (1990), 5-32. 
    [17] D. Kleinbock and G. Margulis, Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. of Math., 148 (1998), 339-360.  doi: 10.2307/120997.
    [18] S. P. Lalley, Renewal theorems in symbolic dynamics. with applications to geodesic flows, non-Euclidean tessellations and their fractal limits, Acta Math., 163 (1989), 1-55.  doi: 10.1007/BF02392732.
    [19] F. Ledrappier, Horospheres on abelian covers, Bol. Soc. Brasil. Mat. (N.S.), 28 (1997), 363-375.  doi: 10.1007/BF01233398.
    [20] F. Ledrappier and O. Sarig, Unique ergodicity for non-uniquely ergodic horocycle flows, Discrete Contin. Dyn. Syst., 16 (2006), 411-433.  doi: 10.3934/dcds.2006.16.411.
    [21] G. Margulis, Indefinite quadratic forms and unipotent flows on homogeneous spaces, in Dynamical Systems and Ergodic Theory (Warsaw, 1986), Banach Center Publ., 23, PWN, Warsaw, 1989,399-309.
    [22] G. Margulis, Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 17, Springer-Verlag, Berlin, 1991.
    [23] G. Margulis and G. Tomanov, Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math., 116 (1994), 347-392.  doi: 10.1007/BF01231565.
    [24] C. McMullenA. Mohammadi and H. Oh, Geodesic planes in hyperbolic 3-manifolds, Invent. Math., 209 (2017), 425-461.  doi: 10.1007/s00222-016-0711-3.
    [25] A. Mohammadi and H. Oh, Classification of joinings for Kleinian groups, Duke Math. J., 165 (2016), 2155-2223.  doi: 10.1215/00127094-3476807.
    [26] A. Mohammadi and H. Oh, Invariant Radon measures for unipotent flows and products of Kleinian groups, Proc. Amer. Math. Soc., 146 (2018), 1469U-1479. 
    [27] M. Pollicott and R. Sharp, Orbit counting for some discrete subgroups acting on simply connected manifolds with negative curvature, Invent. Math., 117 (1994), 275-302.  doi: 10.1007/BF01232242.
    [28] M. Ratner, The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature, Israel J. Math., 16 (1973), 181-197.  doi: 10.1007/BF02757869.
    [29] M. Ratner, Rigidity of horocycle flows, Ann. of Math., 2 (1982), 597-614.  doi: 10.2307/2007014.
    [30] M. Ratner, Horocycle flows, joinings and rigidity of products, Ann. of Math., 118 (1983), 277-313.  doi: 10.2307/2007030.
    [31] M. Ratner, On Raghunathan's measure conjecture, Ann. of Math., 134 (1991), 545-607.  doi: 10.2307/2944357.
    [32] M. Rees, Checking ergodicity of some geodesic flows with inifinte Gibbs measure, Ergod. Th. Dynam. Sys., 1 (1981), 107-133. 
    [33] T. Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N.S.), 95 (2003), ⅵ+96 pp. 
    [34] V. A. Rohlin, On basic concepts of measure theory, Mat. Sbornik, 67 (1949), 107-150. 
    [35] O. Sarig, Invariant measures for the horocycle flow on Abelian covers, Invent. Math., 157 (2004), 519-551.  doi: 10.1007/s00222-004-0357-4.
    [36] O. Sarig and B. Schapira, The generic points for the horocycle flow on a class of hyperbolic surfaces with infinite genus, Int. Math. Res. Not. IMRN 2008, Art. ID rnn 086, 37 pp.
    [37] C. Series, Geometric Markov coding of geodesics on surfaces of constant negative curvature, Ergodic Theory Dynam. Systems, 6 (1986), 601-625. 
    [38] C. Series, Geometrical methods of symbolic coding, in Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces (Trieste, 1989) (eds. T. Bedford, M. Keane and C. Series), Oxford Sci. Publ., Oxford Univ. Press, New York, 1991.
    [39] D. Winter, Mixing of frame flow for rank one locally symmetric manifold and measure classification, Israel J. Math., 201 (2015), 467-507.  doi: 10.1007/s11856-015-1258-5.
  • 加载中
SHARE

Article Metrics

HTML views(1645) PDF downloads(132) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return