
-
Previous Article
Rotation number of contracted rotations
- JMD Home
- This Volume
-
Next Article
Periodic Reeb orbits on prequantization bundles
Continuity of Hausdorff dimension across generic dynamical Lagrange and Markov spectra
1. | IMPA, Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina, Jardim Botânico, Rio de Janeiro, RJ, CEP 22460-320, Brazil |
2. | Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS (UMR 7539), F-93439, Villetaneuse, France |
Let $\varphi_0$ be a smooth area-preserving diffeomorphism of a compact surface $M$ and let $Λ_0$ be a horseshoe of $\varphi_0$ with Hausdorff dimension strictly smaller than one. Given a smooth function $f:M\to \mathbb{R}$ and a small smooth area-preserving perturtabion $\varphi$ of $\varphi_0$, let $L_{\varphi, f}$, resp. $M_{\varphi, f}$ be the Lagrange, resp. Markov spectrum of asymptotic highest, resp. highest values of $f$ along the $\varphi$-orbits of points in the horseshoe $Λ$ obtained by hyperbolic continuation of $Λ_0$.
We show that, for generic choices of $\varphi$ and $f$, the Hausdorff dimension of the sets $L_{\varphi, f}\cap (-∞, t)$ vary continuously with $t∈\mathbb{R}$ and, moreover, $M_{\varphi, f}\cap (-∞, t)$ has the same Hausdorff dimension as $L_{\varphi, f}\cap (-∞, t)$ for all $t∈\mathbb{R}$.
References:
[1] |
T. Cusick and M. Flahive,
The Markoff and Lagrange Spectra, Mathematical Surveys and Monographs, 30, American Mathematical Society, Providence, RI, 1989.
doi: 10.1090/surv/030. |
[2] |
S. Hersonsky and F. Paulin,
Diophantine approximation for negatively curved manifolds, Math. Z., 241 (2002), 181-226.
doi: 10.1007/s002090200412. |
[3] |
M. Hirsch, C Pugh and M. Shub,
Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. |
[4] |
C. G. Moreira, Geometric properties of the Markov and Lagrange spectra, preprint, 2016, available at arXiv: 1612.05782, accepted for publication in Ann. Math. |
[5] |
C. G. Moreira, Geometric properties of images of cartesian products of regular Cantor sets by differentiable real maps, preprint, 2016, available at arXiv: 1611.00933. |
[6] |
C. G. Moreira and S. Romaña,
On the Lagrange and Markov dynamical spectra, Ergodic Theory Dynam. Systems, 37 (2017), 1570-1591.
doi: 10.1017/etds.2015.121. |
[7] |
C. G. Moreira and J.-C. Yoccoz,
Tangences homoclines stables pour des ensembles hyperboliques de grande dimension fractale, Ann. Sci. Éc. Norm. Supér. (4), 43 (2010), 1-68.
doi: 10.24033/asens.2115. |
[8] |
J. Palis and F. Takens,
Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations, Cambridge Studies in Advanced Mathematics, 35 Cambridge University Press, Cambridge, 1993. |
show all references
References:
[1] |
T. Cusick and M. Flahive,
The Markoff and Lagrange Spectra, Mathematical Surveys and Monographs, 30, American Mathematical Society, Providence, RI, 1989.
doi: 10.1090/surv/030. |
[2] |
S. Hersonsky and F. Paulin,
Diophantine approximation for negatively curved manifolds, Math. Z., 241 (2002), 181-226.
doi: 10.1007/s002090200412. |
[3] |
M. Hirsch, C Pugh and M. Shub,
Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. |
[4] |
C. G. Moreira, Geometric properties of the Markov and Lagrange spectra, preprint, 2016, available at arXiv: 1612.05782, accepted for publication in Ann. Math. |
[5] |
C. G. Moreira, Geometric properties of images of cartesian products of regular Cantor sets by differentiable real maps, preprint, 2016, available at arXiv: 1611.00933. |
[6] |
C. G. Moreira and S. Romaña,
On the Lagrange and Markov dynamical spectra, Ergodic Theory Dynam. Systems, 37 (2017), 1570-1591.
doi: 10.1017/etds.2015.121. |
[7] |
C. G. Moreira and J.-C. Yoccoz,
Tangences homoclines stables pour des ensembles hyperboliques de grande dimension fractale, Ann. Sci. Éc. Norm. Supér. (4), 43 (2010), 1-68.
doi: 10.24033/asens.2115. |
[8] |
J. Palis and F. Takens,
Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations, Cambridge Studies in Advanced Mathematics, 35 Cambridge University Press, Cambridge, 1993. |

[1] |
M. C. Carbinatto, K. Mischaikow. Horseshoes and the Conley index spectrum - II: the theorem is sharp. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 599-616. doi: 10.3934/dcds.1999.5.599 |
[2] |
Carlos Matheus, Jacob Palis. An estimate on the Hausdorff dimension of stable sets of non-uniformly hyperbolic horseshoes. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 431-448. doi: 10.3934/dcds.2018020 |
[3] |
Philipp Kunde. Smooth diffeomorphisms with homogeneous spectrum and disjointness of convolutions. Journal of Modern Dynamics, 2016, 10: 439-481. doi: 10.3934/jmd.2016.10.439 |
[4] |
B. Fernandez, E. Ugalde, J. Urías. Spectrum of dimensions for Poincaré recurrences of Markov maps. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 835-849. doi: 10.3934/dcds.2002.8.835 |
[5] |
Vanderlei Horita, Marcelo Viana. Hausdorff dimension for non-hyperbolic repellers II: DA diffeomorphisms. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1125-1152. doi: 10.3934/dcds.2005.13.1125 |
[6] |
C. T. Cremins, G. Infante. A semilinear $A$-spectrum. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 235-242. doi: 10.3934/dcdss.2008.1.235 |
[7] |
Dmitry Dolgopyat, Dmitry Jakobson. On small gaps in the length spectrum. Journal of Modern Dynamics, 2016, 10: 339-352. doi: 10.3934/jmd.2016.10.339 |
[8] |
Natalija Sergejeva. On the unusual Fucik spectrum. Conference Publications, 2007, 2007 (Special) : 920-926. doi: 10.3934/proc.2007.2007.920 |
[9] |
Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure and Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263 |
[10] |
Umesh V. Dubey, Vivek M. Mallick. Spectrum of some triangulated categories. Electronic Research Announcements, 2011, 18: 50-53. doi: 10.3934/era.2011.18.50 |
[11] |
Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006 |
[12] |
Emmanuel Schenck. Exponential gaps in the length spectrum. Journal of Modern Dynamics, 2020, 16: 207-223. doi: 10.3934/jmd.2020007 |
[13] |
Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615 |
[14] |
J. Douglas Wright. On the spectrum of the superposition of separated potentials.. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 273-281. doi: 10.3934/dcdsb.2013.18.273 |
[15] |
David Damanik, Anton Gorodetski. The spectrum of the weakly coupled Fibonacci Hamiltonian. Electronic Research Announcements, 2009, 16: 23-29. doi: 10.3934/era.2009.16.23 |
[16] |
Yves Guivarc'h. On the spectrum of a large subgroup of a semisimple group. Journal of Modern Dynamics, 2008, 2 (1) : 15-42. doi: 10.3934/jmd.2008.2.15 |
[17] |
Frédéric Naud. The Ruelle spectrum of generic transfer operators. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2521-2531. doi: 10.3934/dcds.2012.32.2521 |
[18] |
Tao Yu, Guohua Zhang, Ruifeng Zhang. Discrete spectrum for amenable group actions. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5871-5886. doi: 10.3934/dcds.2021099 |
[19] |
Balázs Bárány, Michaƚ Rams, Ruxi Shi. On the multifractal spectrum of weighted Birkhoff averages. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2461-2497. doi: 10.3934/dcds.2021199 |
[20] |
Omri M. Sarig. Bernoulli equilibrium states for surface diffeomorphisms. Journal of Modern Dynamics, 2011, 5 (3) : 593-608. doi: 10.3934/jmd.2011.5.593 |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]