2018, 13: 187-197. doi: 10.3934/jmd.2018017

Smooth symmetries of $\times a$-invariant sets

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Received  July 19, 2017 Revised  March 18, 2018 Published  December 2018

Fund Project: Supported by ERC grant 306494 and ISF grant 1702/17.

We study the smooth self-maps $f$ of $× a$-invariant sets $X\subseteq[0,1]$. Under various assumptions we show that this forces $\log f'(x)/\log a∈\mathbb{Q}$ at many points in $X$. Our method combines scenery flow methods and equidistribution results in the positive entropy case, where we improve previous work of the author and Shmerkin, with a new topological variant of the scenery flow which applies in the zero-entropy case.

Citation: Michael Hochman. Smooth symmetries of $\times a$-invariant sets. Journal of Modern Dynamics, 2018, 13: 187-197. doi: 10.3934/jmd.2018017
References:
[1]

D. Berend, Multi-invariant sets on tori, Trans. Amer. Math. Soc., 280 (1983), 509-532.  doi: 10.1090/S0002-9947-1983-0716835-6.  Google Scholar

[2]

D. Berend, Multi-invariant sets on compact abelian groups, Trans. Amer. Math. Soc., 286 (1984), 505-535.  doi: 10.1090/S0002-9947-1984-0760973-X.  Google Scholar

[3]

M. EinsiedlerA. Katok and E. Lindenstrauss, Invariant measures and the set of exceptions to Littlewood's conjecture, Ann. of Math. (2), 164 (2006), 513-560.  doi: 10.4007/annals.2006.164.513.  Google Scholar

[4]

M. Einsiedler and E. Lindenstrauss, Rigidity properties of $\Bbb Z^d$-actions on tori and solenoids, Electron. Res. Announc. Amer. Math. Soc., 9 (2003), 99-110 (electronic).  doi: 10.1090/S1079-6762-03-00117-3.  Google Scholar

[5]

M. ElekesT. Keleti and A. Máthé, Self-similar and self-affine sets: Measure of the intersection of two copies, Ergodic Theory and Dynamical Systems, 30 (2010), 399-440.  doi: 10.1017/S0143385709000121.  Google Scholar

[6]

K. J. Falconer and D. T. Marsh, On the Lipschitz equivalence of Cantor sets, Mathematika, 39 (1992), 223-233.  doi: 10.1112/S0025579300014959.  Google Scholar

[7]

D.-J. FengW. Huang and H. Rao, Affine embeddings and intersections of Cantor sets, Journal de Mathématiques Pures et Appliquées, 102 (2014), 1062-1079.  doi: 10.1016/j.matpur.2014.03.003.  Google Scholar

[8]

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1-49.  doi: 10.1007/BF01692494.  Google Scholar

[9]

M. Hochman, Dynamics on fractal measures, preprint, arXiv: 1008.3731, 2010. Google Scholar

[10]

M. Hochman, Geometric rigidity of $× m$ invariant measures, J. Eur. Math. Soc. (JEMS), 14 (2012), 1539-1563.  doi: 10.4171/JEMS/340.  Google Scholar

[11]

M. Hochman, On self-similar sets with overlaps and inverse theorems for entropy, Ann. of Math. (2), 180 (2014), 773-822.  doi: 10.4007/annals.2014.180.2.7.  Google Scholar

[12]

M. Hochman, Some problems on the boundary of fractal geometry and additive combinatorics, to appear in Proceedings of FARF 3, arXiv: 1608.02711, 2016. Google Scholar

[13]

M. Hochman and P. Shmerkin, Local entropy averages and projections of fractal measures, Ann. of Math. (2), 175 (2012), 1001-1059.  doi: 10.4007/annals.2012.175.3.1.  Google Scholar

[14]

M. Hochman and P. Shmerkin, Equidistribution from fractal measures, Inventiones Mathematicae, 202 (2015), 427-479.  doi: 10.1007/s00222-014-0573-5.  Google Scholar

[15]

B. KalininA. Katok and F. Rodriguez Hertz, New progress in nonuniform measure and cocycle rigidity, Electron. Res. Announc. Math. Sci., 15 (2008), 79-92.   Google Scholar

[16]

A. Katok and R. J. Spatzier, Invariant measures for higher-rank hyperbolic abelian actions, Ergodic Theory Dynam. Systems, 16 (1996), 751-778.  doi: 10.1017/S0143385700009081.  Google Scholar

[17]

P. Shmerkin, On Furstenberg's intersection conjecture, self-similar measures, and the $L^q$ norms of convolutions, preprint, arXiv: 1609.07802, 2016. Google Scholar

[18]

M. Wu, A proof of Furstenberg's conjecture on the intersections of $×$p and $×$q-invariant sets, preprint, arXiv: 1609.08053, 2016. Google Scholar

show all references

References:
[1]

D. Berend, Multi-invariant sets on tori, Trans. Amer. Math. Soc., 280 (1983), 509-532.  doi: 10.1090/S0002-9947-1983-0716835-6.  Google Scholar

[2]

D. Berend, Multi-invariant sets on compact abelian groups, Trans. Amer. Math. Soc., 286 (1984), 505-535.  doi: 10.1090/S0002-9947-1984-0760973-X.  Google Scholar

[3]

M. EinsiedlerA. Katok and E. Lindenstrauss, Invariant measures and the set of exceptions to Littlewood's conjecture, Ann. of Math. (2), 164 (2006), 513-560.  doi: 10.4007/annals.2006.164.513.  Google Scholar

[4]

M. Einsiedler and E. Lindenstrauss, Rigidity properties of $\Bbb Z^d$-actions on tori and solenoids, Electron. Res. Announc. Amer. Math. Soc., 9 (2003), 99-110 (electronic).  doi: 10.1090/S1079-6762-03-00117-3.  Google Scholar

[5]

M. ElekesT. Keleti and A. Máthé, Self-similar and self-affine sets: Measure of the intersection of two copies, Ergodic Theory and Dynamical Systems, 30 (2010), 399-440.  doi: 10.1017/S0143385709000121.  Google Scholar

[6]

K. J. Falconer and D. T. Marsh, On the Lipschitz equivalence of Cantor sets, Mathematika, 39 (1992), 223-233.  doi: 10.1112/S0025579300014959.  Google Scholar

[7]

D.-J. FengW. Huang and H. Rao, Affine embeddings and intersections of Cantor sets, Journal de Mathématiques Pures et Appliquées, 102 (2014), 1062-1079.  doi: 10.1016/j.matpur.2014.03.003.  Google Scholar

[8]

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1-49.  doi: 10.1007/BF01692494.  Google Scholar

[9]

M. Hochman, Dynamics on fractal measures, preprint, arXiv: 1008.3731, 2010. Google Scholar

[10]

M. Hochman, Geometric rigidity of $× m$ invariant measures, J. Eur. Math. Soc. (JEMS), 14 (2012), 1539-1563.  doi: 10.4171/JEMS/340.  Google Scholar

[11]

M. Hochman, On self-similar sets with overlaps and inverse theorems for entropy, Ann. of Math. (2), 180 (2014), 773-822.  doi: 10.4007/annals.2014.180.2.7.  Google Scholar

[12]

M. Hochman, Some problems on the boundary of fractal geometry and additive combinatorics, to appear in Proceedings of FARF 3, arXiv: 1608.02711, 2016. Google Scholar

[13]

M. Hochman and P. Shmerkin, Local entropy averages and projections of fractal measures, Ann. of Math. (2), 175 (2012), 1001-1059.  doi: 10.4007/annals.2012.175.3.1.  Google Scholar

[14]

M. Hochman and P. Shmerkin, Equidistribution from fractal measures, Inventiones Mathematicae, 202 (2015), 427-479.  doi: 10.1007/s00222-014-0573-5.  Google Scholar

[15]

B. KalininA. Katok and F. Rodriguez Hertz, New progress in nonuniform measure and cocycle rigidity, Electron. Res. Announc. Math. Sci., 15 (2008), 79-92.   Google Scholar

[16]

A. Katok and R. J. Spatzier, Invariant measures for higher-rank hyperbolic abelian actions, Ergodic Theory Dynam. Systems, 16 (1996), 751-778.  doi: 10.1017/S0143385700009081.  Google Scholar

[17]

P. Shmerkin, On Furstenberg's intersection conjecture, self-similar measures, and the $L^q$ norms of convolutions, preprint, arXiv: 1609.07802, 2016. Google Scholar

[18]

M. Wu, A proof of Furstenberg's conjecture on the intersections of $×$p and $×$q-invariant sets, preprint, arXiv: 1609.08053, 2016. Google Scholar

[1]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[2]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[3]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[4]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[5]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[6]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[7]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[8]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[9]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[10]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[11]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[12]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[13]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[14]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[15]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[16]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[17]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (73)
  • HTML views (497)
  • Cited by (0)

Other articles
by authors

[Back to Top]