-
Previous Article
Countable Markov partitions suitable for thermodynamic formalism
- JMD Home
- This Volume
-
Next Article
Symmetry of entropy in higher rank diagonalizable actions and measure classification
Smooth symmetries of $\times a$-invariant sets
Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel |
We study the smooth self-maps $f$ of $× a$-invariant sets $X\subseteq[0,1]$. Under various assumptions we show that this forces $\log f'(x)/\log a∈\mathbb{Q}$ at many points in $X$. Our method combines scenery flow methods and equidistribution results in the positive entropy case, where we improve previous work of the author and Shmerkin, with a new topological variant of the scenery flow which applies in the zero-entropy case.
References:
[1] |
D. Berend,
Multi-invariant sets on tori, Trans. Amer. Math. Soc., 280 (1983), 509-532.
doi: 10.1090/S0002-9947-1983-0716835-6. |
[2] |
D. Berend,
Multi-invariant sets on compact abelian groups, Trans. Amer. Math. Soc., 286 (1984), 505-535.
doi: 10.1090/S0002-9947-1984-0760973-X. |
[3] |
M. Einsiedler, A. Katok and E. Lindenstrauss,
Invariant measures and the set of exceptions to Littlewood's conjecture, Ann. of Math. (2), 164 (2006), 513-560.
doi: 10.4007/annals.2006.164.513. |
[4] |
M. Einsiedler and E. Lindenstrauss,
Rigidity properties of $\Bbb Z^d$-actions on tori and solenoids, Electron. Res. Announc. Amer. Math. Soc., 9 (2003), 99-110 (electronic).
doi: 10.1090/S1079-6762-03-00117-3. |
[5] |
M. Elekes, T. Keleti and A. Máthé,
Self-similar and self-affine sets: Measure of the intersection of two copies, Ergodic Theory and Dynamical Systems, 30 (2010), 399-440.
doi: 10.1017/S0143385709000121. |
[6] |
K. J. Falconer and D. T. Marsh,
On the Lipschitz equivalence of Cantor sets, Mathematika, 39 (1992), 223-233.
doi: 10.1112/S0025579300014959. |
[7] |
D.-J. Feng, W. Huang and H. Rao,
Affine embeddings and intersections of Cantor sets, Journal de Mathématiques Pures et Appliquées, 102 (2014), 1062-1079.
doi: 10.1016/j.matpur.2014.03.003. |
[8] |
H. Furstenberg,
Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1-49.
doi: 10.1007/BF01692494. |
[9] |
M. Hochman, Dynamics on fractal measures, preprint, arXiv: 1008.3731, 2010. |
[10] |
M. Hochman,
Geometric rigidity of $× m$ invariant measures, J. Eur. Math. Soc. (JEMS), 14 (2012), 1539-1563.
doi: 10.4171/JEMS/340. |
[11] |
M. Hochman,
On self-similar sets with overlaps and inverse theorems for entropy, Ann. of Math. (2), 180 (2014), 773-822.
doi: 10.4007/annals.2014.180.2.7. |
[12] |
M. Hochman, Some problems on the boundary of fractal geometry and additive combinatorics, to appear in Proceedings of FARF 3, arXiv: 1608.02711, 2016. |
[13] |
M. Hochman and P. Shmerkin,
Local entropy averages and projections of fractal measures, Ann. of Math. (2), 175 (2012), 1001-1059.
doi: 10.4007/annals.2012.175.3.1. |
[14] |
M. Hochman and P. Shmerkin,
Equidistribution from fractal measures, Inventiones Mathematicae, 202 (2015), 427-479.
doi: 10.1007/s00222-014-0573-5. |
[15] |
B. Kalinin, A. Katok and F. Rodriguez Hertz,
New progress in nonuniform measure and cocycle rigidity, Electron. Res. Announc. Math. Sci., 15 (2008), 79-92.
|
[16] |
A. Katok and R. J. Spatzier,
Invariant measures for higher-rank hyperbolic abelian actions, Ergodic Theory Dynam. Systems, 16 (1996), 751-778.
doi: 10.1017/S0143385700009081. |
[17] |
P. Shmerkin, On Furstenberg's intersection conjecture, self-similar measures, and the $L^q$ norms of convolutions, preprint, arXiv: 1609.07802, 2016. |
[18] |
M. Wu, A proof of Furstenberg's conjecture on the intersections of $×$p and $×$q-invariant sets, preprint, arXiv: 1609.08053, 2016. |
show all references
References:
[1] |
D. Berend,
Multi-invariant sets on tori, Trans. Amer. Math. Soc., 280 (1983), 509-532.
doi: 10.1090/S0002-9947-1983-0716835-6. |
[2] |
D. Berend,
Multi-invariant sets on compact abelian groups, Trans. Amer. Math. Soc., 286 (1984), 505-535.
doi: 10.1090/S0002-9947-1984-0760973-X. |
[3] |
M. Einsiedler, A. Katok and E. Lindenstrauss,
Invariant measures and the set of exceptions to Littlewood's conjecture, Ann. of Math. (2), 164 (2006), 513-560.
doi: 10.4007/annals.2006.164.513. |
[4] |
M. Einsiedler and E. Lindenstrauss,
Rigidity properties of $\Bbb Z^d$-actions on tori and solenoids, Electron. Res. Announc. Amer. Math. Soc., 9 (2003), 99-110 (electronic).
doi: 10.1090/S1079-6762-03-00117-3. |
[5] |
M. Elekes, T. Keleti and A. Máthé,
Self-similar and self-affine sets: Measure of the intersection of two copies, Ergodic Theory and Dynamical Systems, 30 (2010), 399-440.
doi: 10.1017/S0143385709000121. |
[6] |
K. J. Falconer and D. T. Marsh,
On the Lipschitz equivalence of Cantor sets, Mathematika, 39 (1992), 223-233.
doi: 10.1112/S0025579300014959. |
[7] |
D.-J. Feng, W. Huang and H. Rao,
Affine embeddings and intersections of Cantor sets, Journal de Mathématiques Pures et Appliquées, 102 (2014), 1062-1079.
doi: 10.1016/j.matpur.2014.03.003. |
[8] |
H. Furstenberg,
Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1-49.
doi: 10.1007/BF01692494. |
[9] |
M. Hochman, Dynamics on fractal measures, preprint, arXiv: 1008.3731, 2010. |
[10] |
M. Hochman,
Geometric rigidity of $× m$ invariant measures, J. Eur. Math. Soc. (JEMS), 14 (2012), 1539-1563.
doi: 10.4171/JEMS/340. |
[11] |
M. Hochman,
On self-similar sets with overlaps and inverse theorems for entropy, Ann. of Math. (2), 180 (2014), 773-822.
doi: 10.4007/annals.2014.180.2.7. |
[12] |
M. Hochman, Some problems on the boundary of fractal geometry and additive combinatorics, to appear in Proceedings of FARF 3, arXiv: 1608.02711, 2016. |
[13] |
M. Hochman and P. Shmerkin,
Local entropy averages and projections of fractal measures, Ann. of Math. (2), 175 (2012), 1001-1059.
doi: 10.4007/annals.2012.175.3.1. |
[14] |
M. Hochman and P. Shmerkin,
Equidistribution from fractal measures, Inventiones Mathematicae, 202 (2015), 427-479.
doi: 10.1007/s00222-014-0573-5. |
[15] |
B. Kalinin, A. Katok and F. Rodriguez Hertz,
New progress in nonuniform measure and cocycle rigidity, Electron. Res. Announc. Math. Sci., 15 (2008), 79-92.
|
[16] |
A. Katok and R. J. Spatzier,
Invariant measures for higher-rank hyperbolic abelian actions, Ergodic Theory Dynam. Systems, 16 (1996), 751-778.
doi: 10.1017/S0143385700009081. |
[17] |
P. Shmerkin, On Furstenberg's intersection conjecture, self-similar measures, and the $L^q$ norms of convolutions, preprint, arXiv: 1609.07802, 2016. |
[18] |
M. Wu, A proof of Furstenberg's conjecture on the intersections of $×$p and $×$q-invariant sets, preprint, arXiv: 1609.08053, 2016. |
[1] |
Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118. |
[2] |
Krzysztof Barański. Hausdorff dimension of self-affine limit sets with an invariant direction. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1015-1023. doi: 10.3934/dcds.2008.21.1015 |
[3] |
V. V. Chepyzhov, A. A. Ilyin. On the fractal dimension of invariant sets: Applications to Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 117-135. doi: 10.3934/dcds.2004.10.117 |
[4] |
Hiroki Sumi, Mariusz Urbański. Bowen parameter and Hausdorff dimension for expanding rational semigroups. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2591-2606. doi: 10.3934/dcds.2012.32.2591 |
[5] |
Krzysztof Barański, Michał Wardal. On the Hausdorff dimension of the Sierpiński Julia sets. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3293-3313. doi: 10.3934/dcds.2015.35.3293 |
[6] |
Joseph Squillace. Estimating the fractal dimension of sets determined by nonergodic parameters. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5843-5859. doi: 10.3934/dcds.2017254 |
[7] |
Tien-Cuong Dinh, Nessim Sibony. Rigidity of Julia sets for Hénon type maps. Journal of Modern Dynamics, 2014, 8 (3&4) : 499-548. doi: 10.3934/jmd.2014.8.499 |
[8] |
Lulu Fang, Min Wu. Hausdorff dimension of certain sets arising in Engel continued fractions. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2375-2393. doi: 10.3934/dcds.2018098 |
[9] |
Doug Hensley. Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2417-2436. doi: 10.3934/dcds.2012.32.2417 |
[10] |
Carlos Matheus, Jacob Palis. An estimate on the Hausdorff dimension of stable sets of non-uniformly hyperbolic horseshoes. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 431-448. doi: 10.3934/dcds.2018020 |
[11] |
Davit Karagulyan. Hausdorff dimension of a class of three-interval exchange maps. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1257-1281. doi: 10.3934/dcds.2020077 |
[12] |
Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123 |
[13] |
Fawwaz Batayneh, Cecilia González-Tokman. On the number of invariant measures for random expanding maps in higher dimensions. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5887-5914. doi: 10.3934/dcds.2021100 |
[14] |
Weiyuan Qiu, Fei Yang, Yongcheng Yin. Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3375-3416. doi: 10.3934/dcds.2016.36.3375 |
[15] |
Simon Lloyd, Edson Vargas. Critical covering maps without absolutely continuous invariant probability measure. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2393-2412. doi: 10.3934/dcds.2019101 |
[16] |
Tifei Qian, Zhihong Xia. Heteroclinic orbits and chaotic invariant sets for monotone twist maps. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 69-95. doi: 10.3934/dcds.2003.9.69 |
[17] |
Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207 |
[18] |
Umberto Mosco, Maria Agostina Vivaldi. Vanishing viscosity for fractal sets. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1207-1235. doi: 10.3934/dcds.2010.28.1207 |
[19] |
Jose F. Alves; Stefano Luzzatto and Vilton Pinheiro. Markov structures for non-uniformly expanding maps on compact manifolds in arbitrary dimension. Electronic Research Announcements, 2003, 9: 26-31. |
[20] |
Xueting Tian, Paulo Varandas. Topological entropy of level sets of empirical measures for non-uniformly expanding maps. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5407-5431. doi: 10.3934/dcds.2017235 |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]