
-
Previous Article
Decomposition of infinite-to-one factor codes and uniqueness of relative equilibrium states
- JMD Home
- This Volume
-
Next Article
On the non-equivalence of the Bernoulli and $ K$ properties in dimension four
On manifolds admitting stable type Ⅲ$_{\textbf1}$ Anosov diffeomorphisms
Einstein Institute of Mathematics, Edmond J. Safra Campus (Givat Ram), The Hebrew University, Jerusalem 91904, Israel |
We prove that for every $d≠3$ there is an Anosov diffeomorphism of $\mathbb{T}^{d}$ which is of stable Krieger type ${\rm III}_1$ (its Maharam extension is weakly mixing). This is done by a construction of stable type ${\rm III}_1$ Markov measures on the golden mean shift which can be smoothly realized as a $C^{1}$ Anosov diffeomorphism of $\mathbb{T}^2$ via the construction in our earlier paper.
References:
[1] |
J. Aaronson,
An Introduction to Infinite Ergodic Theory, Amer. Math. Soc., Providence, R.I., 1997. |
[2] |
J. Aaronson, M. Lin and B. Weiss,
Mixing properties of Markov operators and ergodic transformations, and ergodicity of Cartesian products, A collection of invited papers on ergodic theory, Israel J. Math., 33 (1979), 198-224 (1980).
doi: 10.1007/BF02762161. |
[3] |
J. Aaronson, H. Nakada and O. Sarig,
Exchangeable measures for subshifts, Ann. Inst. H. Poincaré Probab. Statist., 42 (2006), 727-751.
doi: 10.1016/j.anihpb.2005.10.002. |
[4] |
R. L. Adler,
Symbolic dynamics and Markov partitions, Bull. Amer. Math. Soc. (N.S.), 35 (1998), 1-56.
doi: 10.1090/S0273-0979-98-00737-X. |
[5] |
R. L. Adler and B. Weiss,
Similarity of Automorphisms of the Torus, Memoirs of the American Mathematical Society, No. 98, American Mathematical Society, Providence, R.I. 1970. |
[6] |
R. Bowen,
Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, second revised edition, with a preface by David Ruelle, edited by Jean-René Chazottes, Lecture Notes in Mathematics, 470, Springer-Verlag, Berlin, 2008. |
[7] |
J. M. Choksi, J. H. Hawkins and V. S. Prasad,
Abelian cocycles for nonsingular ergodic
transformations and the genericity of type Ⅲ1 transformations, Monatsh. Math., 103 (1987), 187-205.
doi: 10.1007/BF01364339. |
[8] |
A. Danilenko and M. Lemanczyk, K-property for Maharam extensions of nonsingular Bernoulli and Markov shifts, arXiv: 1611.05173. Google Scholar |
[9] |
J. Feldman and C. C. Moore,
Ergodic equivalence relations, cohomology and von Neumann algebras, I, Trans. Amer. Math. Soc., 234 (1977), 289-324.
doi: 10.1090/S0002-9947-1977-0578730-2. |
[10] |
H. Furstenberg and B. Weiss, The finite multipliers of infinite ergodic transformations, The
structure of attractors in dynamical systems, (Proc. Conf., North Dakota State Univ., Fargo,
N.D., 1977), 127–132, Lecture Notes in Mathematics, 668, Springer-Verlag, Berlin, 1978.
doi: 10.1007/BFb0101785. |
[11] |
J. M. Hawkins,
Amenable relations for endomorphisms, Trans. Amer. Math. Soc., 343 (1994), 169-191.
doi: 10.1090/S0002-9947-1994-1179396-3. |
[12] |
A. Gorodnik,
Open problems in dynamics and related fields, J. Mod. Dyn., 1 (2007), 1-35.
doi: 10.3934/jmd.2007.1.1. |
[13] |
Z. Kosloff, Conservative Anosov diffeomorphisms of the two torus without an absolutely continuous invariant measure, arXiv: 1410.7707. Google Scholar |
[14] |
Z. Kosloff,
On the K property for Maharam extensions of Bernoulli shifts and a question of
Krengel, Israel J. Math., 199 (2014), 485-506.
doi: 10.1007/s11856-013-0069-9. |
[15] |
W. Krieger,
On non-singular transformations of a measure space, Ⅰ, Ⅱ, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 11 (1969), 83-97.
doi: 10.1007/BF00531812. |
[16] |
R. LePage and V. Mandrekar,
On likelihood ratios of measures given by Markov chains, Proc. Amer. Math. Soc., 52 (1975), 377-380.
doi: 10.1090/S0002-9939-1975-0380964-0. |
[17] |
D. A. Levin, Y. Peres and E. L. Wilmer, Markov Chains and Mixing Times, with a chapter by
James G. Propp and David B. Wilson, American Mathematical Society, Providence, RI, 2009. |
[18] |
W. Parry,
Ergodic and spectral analysis of certain infinite measure preserving transformations, Proc. Amer. Math. Soc., 16 (1965), 960-966.
doi: 10.1090/S0002-9939-1965-0181737-8. |
[19] |
K. Schmidt, Cocycles on Ergodic Transformation Groups, Macmillan Lectures in Mathematics,
Vol. 1, Macmillan Company of India, Ltd., Delhi, 1977. |
[20] |
A. N. Shiryayev, Probability, second edition, translated from the Russian by R. P. Boas,
Graduate Texts in Mathematics, 95, Springer-Verlag, New York, 1984. |
[21] |
C. E. Silva and P. Thieullen,
A skew product entropy for nonsingular transformations, J. London Math. Soc.(2), 52 (1995), 497-516.
doi: 10.1112/jlms/52.3.497. |
[22] |
J. G. Sinai,
Markov partitions and $U$-diffeomorphisms, Funkcional. Anal. i Priložen., 2 (1968), 64-89.
|
[23] |
M. Thaler,
Transformations on [0, 1] with infinite invariant measures, Israel J. Math., 46 (1983), 67-96.
doi: 10.1007/BF02760623. |
show all references
References:
[1] |
J. Aaronson,
An Introduction to Infinite Ergodic Theory, Amer. Math. Soc., Providence, R.I., 1997. |
[2] |
J. Aaronson, M. Lin and B. Weiss,
Mixing properties of Markov operators and ergodic transformations, and ergodicity of Cartesian products, A collection of invited papers on ergodic theory, Israel J. Math., 33 (1979), 198-224 (1980).
doi: 10.1007/BF02762161. |
[3] |
J. Aaronson, H. Nakada and O. Sarig,
Exchangeable measures for subshifts, Ann. Inst. H. Poincaré Probab. Statist., 42 (2006), 727-751.
doi: 10.1016/j.anihpb.2005.10.002. |
[4] |
R. L. Adler,
Symbolic dynamics and Markov partitions, Bull. Amer. Math. Soc. (N.S.), 35 (1998), 1-56.
doi: 10.1090/S0273-0979-98-00737-X. |
[5] |
R. L. Adler and B. Weiss,
Similarity of Automorphisms of the Torus, Memoirs of the American Mathematical Society, No. 98, American Mathematical Society, Providence, R.I. 1970. |
[6] |
R. Bowen,
Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, second revised edition, with a preface by David Ruelle, edited by Jean-René Chazottes, Lecture Notes in Mathematics, 470, Springer-Verlag, Berlin, 2008. |
[7] |
J. M. Choksi, J. H. Hawkins and V. S. Prasad,
Abelian cocycles for nonsingular ergodic
transformations and the genericity of type Ⅲ1 transformations, Monatsh. Math., 103 (1987), 187-205.
doi: 10.1007/BF01364339. |
[8] |
A. Danilenko and M. Lemanczyk, K-property for Maharam extensions of nonsingular Bernoulli and Markov shifts, arXiv: 1611.05173. Google Scholar |
[9] |
J. Feldman and C. C. Moore,
Ergodic equivalence relations, cohomology and von Neumann algebras, I, Trans. Amer. Math. Soc., 234 (1977), 289-324.
doi: 10.1090/S0002-9947-1977-0578730-2. |
[10] |
H. Furstenberg and B. Weiss, The finite multipliers of infinite ergodic transformations, The
structure of attractors in dynamical systems, (Proc. Conf., North Dakota State Univ., Fargo,
N.D., 1977), 127–132, Lecture Notes in Mathematics, 668, Springer-Verlag, Berlin, 1978.
doi: 10.1007/BFb0101785. |
[11] |
J. M. Hawkins,
Amenable relations for endomorphisms, Trans. Amer. Math. Soc., 343 (1994), 169-191.
doi: 10.1090/S0002-9947-1994-1179396-3. |
[12] |
A. Gorodnik,
Open problems in dynamics and related fields, J. Mod. Dyn., 1 (2007), 1-35.
doi: 10.3934/jmd.2007.1.1. |
[13] |
Z. Kosloff, Conservative Anosov diffeomorphisms of the two torus without an absolutely continuous invariant measure, arXiv: 1410.7707. Google Scholar |
[14] |
Z. Kosloff,
On the K property for Maharam extensions of Bernoulli shifts and a question of
Krengel, Israel J. Math., 199 (2014), 485-506.
doi: 10.1007/s11856-013-0069-9. |
[15] |
W. Krieger,
On non-singular transformations of a measure space, Ⅰ, Ⅱ, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 11 (1969), 83-97.
doi: 10.1007/BF00531812. |
[16] |
R. LePage and V. Mandrekar,
On likelihood ratios of measures given by Markov chains, Proc. Amer. Math. Soc., 52 (1975), 377-380.
doi: 10.1090/S0002-9939-1975-0380964-0. |
[17] |
D. A. Levin, Y. Peres and E. L. Wilmer, Markov Chains and Mixing Times, with a chapter by
James G. Propp and David B. Wilson, American Mathematical Society, Providence, RI, 2009. |
[18] |
W. Parry,
Ergodic and spectral analysis of certain infinite measure preserving transformations, Proc. Amer. Math. Soc., 16 (1965), 960-966.
doi: 10.1090/S0002-9939-1965-0181737-8. |
[19] |
K. Schmidt, Cocycles on Ergodic Transformation Groups, Macmillan Lectures in Mathematics,
Vol. 1, Macmillan Company of India, Ltd., Delhi, 1977. |
[20] |
A. N. Shiryayev, Probability, second edition, translated from the Russian by R. P. Boas,
Graduate Texts in Mathematics, 95, Springer-Verlag, New York, 1984. |
[21] |
C. E. Silva and P. Thieullen,
A skew product entropy for nonsingular transformations, J. London Math. Soc.(2), 52 (1995), 497-516.
doi: 10.1112/jlms/52.3.497. |
[22] |
J. G. Sinai,
Markov partitions and $U$-diffeomorphisms, Funkcional. Anal. i Priložen., 2 (1968), 64-89.
|
[23] |
M. Thaler,
Transformations on [0, 1] with infinite invariant measures, Israel J. Math., 46 (1983), 67-96.
doi: 10.1007/BF02760623. |

1 or 2 | 13 | 2 |
3 | 21 | 1 or 3 |
3 | 23 | 2 |
1 or 2 | 13 | 2 |
3 | 21 | 1 or 3 |
3 | 23 | 2 |
[1] |
Thomas Barthelmé, Andrey Gogolev. Centralizers of partially hyperbolic diffeomorphisms in dimension 3. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021044 |
[2] |
Azmeer Nordin, Mohd Salmi Md Noorani. Counting finite orbits for the flip systems of shifts of finite type. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021046 |
[3] |
Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004 |
[4] |
Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186 |
[5] |
Kuei-Hu Chang. A novel risk ranking method based on the single valued neutrosophic set. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021065 |
[6] |
Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064 |
[7] |
Brandy Rapatski, James Yorke. Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences & Engineering, 2009, 6 (1) : 135-143. doi: 10.3934/mbe.2009.6.135 |
[8] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[9] |
Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073 |
[10] |
Liqiang Jin, Yanqing Liu, Yanyan Yin, Kok Lay Teo, Fei Liu. Design of probabilistic $ l_2-l_\infty $ filter for uncertain Markov jump systems with partial information of the transition probabilities. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021070 |
[11] |
Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269 |
[12] |
Qian Cao, Yongli Cai, Yong Luo. Nonconstant positive solutions to the ratio-dependent predator-prey system with prey-taxis in one dimension. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021095 |
[13] |
Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021074 |
[14] |
Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033 |
2019 Impact Factor: 0.465
Tools
Metrics
Other articles
by authors
[Back to Top]