-
Previous Article
The Kontsevich–Zorich cocycle over Veech–McMullen family of symmetric translation surfaces
- JMD Home
- This Volume
-
Next Article
Bill Veech's contributions to dynamical systems
Siegel–Veech transforms are in $ \boldsymbol{L^2} $(with an appendix by Jayadev S. Athreya and Rene Rühr)
1. | Department of Mathematics, University of Washington, Padelford Hall, Seattle, WA 98195, USA |
2. | Department of Mathematics, San Francisco State University, Thornton Hall 937, 1600 Holloway Ave, San Francisco, CA 94132, USA |
3. | Department of Mathematics, University of Chicago, 5734 South University Avenue, Chicago, IL 60615, USA |
4. | Faculty of Mathematics, Technion, Haifa, 32000 Israel |
Let $\mathscr{H}$ denote a connected component of a stratum of translation surfaces. We show that the Siegel-Veech transform of a bounded compactly supported function on $\mathbb{R}^2$ is in $L^2(\mathscr{H}, \mu)$, where $\mu$ is the Lebesgue measure on $\mathscr{H}$, and give applications to bounding error terms for counting problems for saddle connections. We also propose a new invariant associated to $SL(2,\mathbb{R})$-invariant measures on strata satisfying certain integrability conditions.
References:
[1] |
J. S. Athreya,
Random affine lattices, Contemp. Math., 639 (2015), 160-174.
doi: 10.1090/conm/639/12793. |
[2] |
J. S. Athreya and J. Chaika,
The distribution of gaps for saddle connection directions, Geom. Funct. Anal., 22 (2012), 1491-1516.
doi: 10.1007/s00039-012-0164-9. |
[3] |
J. S. Athreya and G. A. Margulis,
Logarithm laws for unipotent flows, I, J. Mod. Dyn., 3 (2009), 359-378.
doi: 10.3934/jmd.2009.3.359. |
[4] |
J. S. Athreya and G. A. Margulis,
Values of random polynomials at integer points, J. Mod. Dyn., 12 (2018), 9-16.
doi: 10.3934/jmd.2018002. |
[5] |
A. Avila, S. Gouëzel and J.-C. Yoccoz,
Exponential mixing for the {T}eichmüller flow, Publ. Math. Inst. Hautes Études Sci., 104 (2006), 143-211.
doi: 10.1007/s10240-006-0001-5. |
[6] |
Y. Cheung, P. Hubert and H. Masur,
Dichotomy for the Hausdorff dimension of the set of nonergodic directions, Invent. Math., 183 (2011), 337-383.
doi: 10.1007/s00222-010-0279-2. |
[7] |
P. Chew, There is a planar graph almost as good as the complete graph, SCG '86 Proceedings of the Second Annual Symposium on Computational Geometry, 1986,169–177.
doi: 10.1145/10515.10534. |
[8] |
B. Dozier,
Equidistribution of saddle connections on translation surfaces, J. Mod. Dyn., 14 (2019), 87-120.
doi: 10.3934/jmd.2019004. |
[9] |
A. Eskin, Counting problems in moduli space, in Handbook of Dynamical Systems, Vol. 1B, Elsevier B. V., Amsterdam, 2006,581–595.
doi: 10.1016/S1874-575X(06)80034-2. |
[10] |
A. Eskin and H. Masur,
Asymptotic formulas on flat surfaces, Ergodic Theory Dynam. Systems, 21 (2001), 443-478.
doi: 10.1017/S0143385701001225. |
[11] |
A. Eskin, G. Margulis and S. Mozes,
Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141.
doi: 10.2307/120984. |
[12] |
A. Eskin, M. Mirzakhani and A. Mohammadi,
Isolation, equidistribution, and orbit closures for the $SL(2, \mathbb R)$ action on moduli space, Ann. of Math. (2), 182 (2015), 673-721.
doi: 10.4007/annals.2015.182.2.7. |
[13] |
A. Eskin, M. Mirzakhani and K. Rafi, Counting geodesics in a stratum, to appear, Invent. Math. |
[14] |
S. Fairchild, A higher moment formula for the Siegel-Veech transform over quotients by Hecke triangle groups, preprint, arXiv: 1901.10115. |
[15] |
S. Kerckhoff, H. Masur and J. Smillie,
Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2), 124 (1986), 293-311.
doi: 10.2307/1971280. |
[16] |
M. Kontsevich and A. Zorich,
Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678.
doi: 10.1007/s00222-003-0303-x. |
[17] |
M. Magee, R. Rühr and R. Gutiérrez–Romo, Counting saddle connections in a homology class modulo $\mathcal q$, preprint, arXiv: 1809.00579, 2018. |
[18] |
H. Masur,
The growth rate of trajectories of a quadratic differential, Ergodic Theory Dynam. Systems, 10 (1990), 151-176.
doi: 10.1017/S0143385700005459. |
[19] |
H. Masur,
Interval exchange transformations and measured foliations, Ann. of Math. (2), 115 (1982), 169-200.
doi: 10.2307/1971341. |
[20] |
H. Masur and J. Smillie,
Hausdorff dimension of sets of nonergodic measured foliations, Ann. of Math. (2), 134 (1991), 455-543.
doi: 10.2307/2944356. |
[21] |
A. Nevo, R. Rühr and B. Weiss, Effective counting on translation surfaces, preprint, arXiv: 1708.06263. |
[22] |
D. Nguyen, Volume of the set of surfaces with small saddle connection in rank one affine manifolds, preprint, arXiv: 1211.7314. |
[23] |
K. Rafi,
Hyperbolicity in Teichmüller space, Geometry Topology, 18 (2014), 3025-3053.
doi: 10.2140/gt.2014.18.3025. |
[24] |
C. A. Rogers,
The number of lattice points in a set, Proc. London Math. Soc. (3), 6 (1956), 305-320.
doi: 10.1112/plms/s3-6.2.305. |
[25] |
W. Schmidt,
A metrical theorem in geometry of numbers, Trans. Amer. Math. Soc., 95 (1960), 516-529.
doi: 10.1090/S0002-9947-1960-0117222-9. |
[26] |
C. L. Siegel,
A mean value theorem in geometry of numbers, Ann. Math., 46 (1945), 340-347.
doi: 10.2307/1969027. |
[27] |
J. Smillie and B. Weiss,
Characterizations of lattice surfaces, Invent. Math., 180 (2010), 535-557.
doi: 10.1007/s00222-010-0236-0. |
[28] |
W. Veech,
Siegel measures, Ann. of Math. (2), 148 (1998), 895-944.
doi: 10.2307/121033. |
[29] |
W. Veech,
Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 553-583.
doi: 10.1007/BF01388890. |
[30] |
W. A. Veech,
Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), 115 (1982), 201-242.
doi: 10.2307/1971391. |
[31] |
A. Wright,
Cylinder deformations in orbit closures of translation surfaces, Geometry Topology, 19 (2015), 413-438.
doi: 10.2140/gt.2015.19.413. |
[32] |
A. Zorich, Flat surfaces, in Frontiers in Number Theory, Physics, and Geometry. I, Springer, Berlin, 2006,437–583.
doi: 10.1007/978-3-540-31347-2_13. |
show all references
References:
[1] |
J. S. Athreya,
Random affine lattices, Contemp. Math., 639 (2015), 160-174.
doi: 10.1090/conm/639/12793. |
[2] |
J. S. Athreya and J. Chaika,
The distribution of gaps for saddle connection directions, Geom. Funct. Anal., 22 (2012), 1491-1516.
doi: 10.1007/s00039-012-0164-9. |
[3] |
J. S. Athreya and G. A. Margulis,
Logarithm laws for unipotent flows, I, J. Mod. Dyn., 3 (2009), 359-378.
doi: 10.3934/jmd.2009.3.359. |
[4] |
J. S. Athreya and G. A. Margulis,
Values of random polynomials at integer points, J. Mod. Dyn., 12 (2018), 9-16.
doi: 10.3934/jmd.2018002. |
[5] |
A. Avila, S. Gouëzel and J.-C. Yoccoz,
Exponential mixing for the {T}eichmüller flow, Publ. Math. Inst. Hautes Études Sci., 104 (2006), 143-211.
doi: 10.1007/s10240-006-0001-5. |
[6] |
Y. Cheung, P. Hubert and H. Masur,
Dichotomy for the Hausdorff dimension of the set of nonergodic directions, Invent. Math., 183 (2011), 337-383.
doi: 10.1007/s00222-010-0279-2. |
[7] |
P. Chew, There is a planar graph almost as good as the complete graph, SCG '86 Proceedings of the Second Annual Symposium on Computational Geometry, 1986,169–177.
doi: 10.1145/10515.10534. |
[8] |
B. Dozier,
Equidistribution of saddle connections on translation surfaces, J. Mod. Dyn., 14 (2019), 87-120.
doi: 10.3934/jmd.2019004. |
[9] |
A. Eskin, Counting problems in moduli space, in Handbook of Dynamical Systems, Vol. 1B, Elsevier B. V., Amsterdam, 2006,581–595.
doi: 10.1016/S1874-575X(06)80034-2. |
[10] |
A. Eskin and H. Masur,
Asymptotic formulas on flat surfaces, Ergodic Theory Dynam. Systems, 21 (2001), 443-478.
doi: 10.1017/S0143385701001225. |
[11] |
A. Eskin, G. Margulis and S. Mozes,
Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141.
doi: 10.2307/120984. |
[12] |
A. Eskin, M. Mirzakhani and A. Mohammadi,
Isolation, equidistribution, and orbit closures for the $SL(2, \mathbb R)$ action on moduli space, Ann. of Math. (2), 182 (2015), 673-721.
doi: 10.4007/annals.2015.182.2.7. |
[13] |
A. Eskin, M. Mirzakhani and K. Rafi, Counting geodesics in a stratum, to appear, Invent. Math. |
[14] |
S. Fairchild, A higher moment formula for the Siegel-Veech transform over quotients by Hecke triangle groups, preprint, arXiv: 1901.10115. |
[15] |
S. Kerckhoff, H. Masur and J. Smillie,
Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2), 124 (1986), 293-311.
doi: 10.2307/1971280. |
[16] |
M. Kontsevich and A. Zorich,
Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678.
doi: 10.1007/s00222-003-0303-x. |
[17] |
M. Magee, R. Rühr and R. Gutiérrez–Romo, Counting saddle connections in a homology class modulo $\mathcal q$, preprint, arXiv: 1809.00579, 2018. |
[18] |
H. Masur,
The growth rate of trajectories of a quadratic differential, Ergodic Theory Dynam. Systems, 10 (1990), 151-176.
doi: 10.1017/S0143385700005459. |
[19] |
H. Masur,
Interval exchange transformations and measured foliations, Ann. of Math. (2), 115 (1982), 169-200.
doi: 10.2307/1971341. |
[20] |
H. Masur and J. Smillie,
Hausdorff dimension of sets of nonergodic measured foliations, Ann. of Math. (2), 134 (1991), 455-543.
doi: 10.2307/2944356. |
[21] |
A. Nevo, R. Rühr and B. Weiss, Effective counting on translation surfaces, preprint, arXiv: 1708.06263. |
[22] |
D. Nguyen, Volume of the set of surfaces with small saddle connection in rank one affine manifolds, preprint, arXiv: 1211.7314. |
[23] |
K. Rafi,
Hyperbolicity in Teichmüller space, Geometry Topology, 18 (2014), 3025-3053.
doi: 10.2140/gt.2014.18.3025. |
[24] |
C. A. Rogers,
The number of lattice points in a set, Proc. London Math. Soc. (3), 6 (1956), 305-320.
doi: 10.1112/plms/s3-6.2.305. |
[25] |
W. Schmidt,
A metrical theorem in geometry of numbers, Trans. Amer. Math. Soc., 95 (1960), 516-529.
doi: 10.1090/S0002-9947-1960-0117222-9. |
[26] |
C. L. Siegel,
A mean value theorem in geometry of numbers, Ann. Math., 46 (1945), 340-347.
doi: 10.2307/1969027. |
[27] |
J. Smillie and B. Weiss,
Characterizations of lattice surfaces, Invent. Math., 180 (2010), 535-557.
doi: 10.1007/s00222-010-0236-0. |
[28] |
W. Veech,
Siegel measures, Ann. of Math. (2), 148 (1998), 895-944.
doi: 10.2307/121033. |
[29] |
W. Veech,
Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 553-583.
doi: 10.1007/BF01388890. |
[30] |
W. A. Veech,
Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), 115 (1982), 201-242.
doi: 10.2307/1971391. |
[31] |
A. Wright,
Cylinder deformations in orbit closures of translation surfaces, Geometry Topology, 19 (2015), 413-438.
doi: 10.2140/gt.2015.19.413. |
[32] |
A. Zorich, Flat surfaces, in Frontiers in Number Theory, Physics, and Geometry. I, Springer, Berlin, 2006,437–583.
doi: 10.1007/978-3-540-31347-2_13. |
[1] |
Ferrán Valdez. Veech groups, irrational billiards and stable abelian differentials. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 1055-1063. doi: 10.3934/dcds.2012.32.1055 |
[2] |
Dawei Chen. Strata of abelian differentials and the Teichmüller dynamics. Journal of Modern Dynamics, 2013, 7 (1) : 135-152. doi: 10.3934/jmd.2013.7.135 |
[3] |
Corentin Boissy. Classification of Rauzy classes in the moduli space of Abelian and quadratic differentials. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3433-3457. doi: 10.3934/dcds.2012.32.3433 |
[4] |
Anton Zorich. Explicit Jenkins-Strebel representatives of all strata of Abelian and quadratic differentials. Journal of Modern Dynamics, 2008, 2 (1) : 139-185. doi: 10.3934/jmd.2008.2.139 |
[5] |
Antonio Giorgilli, Stefano Marmi. Convergence radius in the Poincaré-Siegel problem. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 601-621. doi: 10.3934/dcdss.2010.3.601 |
[6] |
Eduard Duryev, Charles Fougeron, Selim Ghazouani. Dilation surfaces and their Veech groups. Journal of Modern Dynamics, 2019, 14: 121-151. doi: 10.3934/jmd.2019005 |
[7] |
Weigu Li, Kening Lu. A Siegel theorem for dynamical systems under random perturbations. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 635-642. doi: 10.3934/dcdsb.2008.9.635 |
[8] |
The Editors. William A. Veech's publications. Journal of Modern Dynamics, 2019, 14: i-iv. doi: 10.3934/jmd.2019i |
[9] |
V. Kumar Murty, Ying Zong. Splitting of abelian varieties. Advances in Mathematics of Communications, 2014, 8 (4) : 511-519. doi: 10.3934/amc.2014.8.511 |
[10] |
John Franks, Michael Handel, Kamlesh Parwani. Fixed points of Abelian actions. Journal of Modern Dynamics, 2007, 1 (3) : 443-464. doi: 10.3934/jmd.2007.1.443 |
[11] |
Pierre Arnoux, Thomas A. Schmidt. Veech surfaces with nonperiodic directions in the trace field. Journal of Modern Dynamics, 2009, 3 (4) : 611-629. doi: 10.3934/jmd.2009.3.611 |
[12] |
Pascal Hubert, Gabriela Schmithüsen. Infinite translation surfaces with infinitely generated Veech groups. Journal of Modern Dynamics, 2010, 4 (4) : 715-732. doi: 10.3934/jmd.2010.4.715 |
[13] |
Giovanni Forni, Howard Masur, John Smillie. Bill Veech's contributions to dynamical systems. Journal of Modern Dynamics, 2019, 14: v-xxv. doi: 10.3934/jmd.2019v |
[14] |
Jonathan Chaika, Yitwah Cheung, Howard Masur. Winning games for bounded geodesics in moduli spaces of quadratic differentials. Journal of Modern Dynamics, 2013, 7 (3) : 395-427. doi: 10.3934/jmd.2013.7.395 |
[15] |
Julien Grivaux, Pascal Hubert. Loci in strata of meromorphic quadratic differentials with fully degenerate Lyapunov spectrum. Journal of Modern Dynamics, 2014, 8 (1) : 61-73. doi: 10.3934/jmd.2014.8.61 |
[16] |
Thomas Kappeler, Yannick Widmer. On nomalized differentials on spectral curves associated with the sinh-Gordon equation. Journal of Geometric Mechanics, 2021, 13 (1) : 73-143. doi: 10.3934/jgm.2020023 |
[17] |
Sandra Carillo, Mauro Lo Schiavo, Cornelia Schiebold. Abelian versus non-Abelian Bäcklund charts: Some remarks. Evolution Equations and Control Theory, 2019, 8 (1) : 43-55. doi: 10.3934/eect.2019003 |
[18] |
Magdalena Czubak, Robert L. Jerrard. Topological defects in the abelian Higgs model. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1933-1968. doi: 10.3934/dcds.2015.35.1933 |
[19] |
Eldho K. Thomas, Nadya Markin, Frédérique Oggier. On Abelian group representability of finite groups. Advances in Mathematics of Communications, 2014, 8 (2) : 139-152. doi: 10.3934/amc.2014.8.139 |
[20] |
S. Eigen, V. S. Prasad. Tiling Abelian groups with a single tile. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 361-365. doi: 10.3934/dcds.2006.16.361 |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]