We describe the Kontsevich–Zorich cocycle over an affine invariant orbifold coming from a (cyclic) covering construction inspired by works of Veech and McMullen. In particular, using the terminology in a recent paper of Filip, we show that all cases of Kontsevich–Zorich monodromies of $ SU(p,q) $ type are realized by appropriate covering constructions.
Citation: |
[1] |
A. Avila, C. Matheus and J.-C. Yoccoz, Zorich conjecture for hyperelliptic Rauzy–Veech groups, Math. Ann., 370 (2018), 785-809.
doi: 10.1007/s00208-017-1568-5.![]() ![]() ![]() |
[2] |
A. Avila and M. Viana, Simplicity of Lyapunov spectra: Proof of the Zorich–Kontsevich conjecture, Acta Math., 198 (2007), 1-56.
doi: 10.1007/s11511-007-0012-1.![]() ![]() ![]() |
[3] |
S. Filip, Zero Lyapunov exponents and monodromy of the Kontsevich-Zorich cocycle, Duke Math. J., 166 (2017), 657-706.
doi: 10.1215/00127094-3715806.![]() ![]() ![]() |
[4] |
E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic, Duke Math. J., 103 (2000), 191-213.
doi: 10.1215/S0012-7094-00-10321-3.![]() ![]() ![]() |
[5] |
M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678.
doi: 10.1007/s00222-003-0303-x.![]() ![]() ![]() |
[6] |
C. Matheus, M. Möller and J.-C. Yoccoz, A criterion for the simplicity of the Lyapunov spectrum of square-tiled surfaces, Invent. Math., 202 (2015), 333-425.
doi: 10.1007/s00222-014-0565-5.![]() ![]() ![]() |
[7] |
C. McMullen, Braid groups and Hodge theory, Math. Ann., 355 (2013), 893-946.
doi: 10.1007/s00208-012-0804-2.![]() ![]() ![]() |
[8] |
J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977.
![]() ![]() |
[9] |
W. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 553-583.
doi: 10.1007/BF01388890.![]() ![]() ![]() |