2020, 16: 1-36. doi: 10.3934/jmd.2020001

The degree of Bowen factors and injective codings of diffeomorphisms

Laboratoire de Mathématiques d'Orsay, Université Paris-Sud, F-91405 Orsay Cedex, France

Received  August 2018 Revised  July 10, 2019 Published  December 2019

We show that symbolic finite-to-one extensions of the type constructed by O. Sarig for surface diffeomorphisms induce Hölder-continuous conjugacies on large sets. We deduce this from their Bowen property. This notion, introduced in a joint work with M. Boyle, generalizes a fact first observed by R. Bowen for Markov partitions. We rely on the notion of degree from finite equivalence theory and magic word isomorphisms.

As an application, we give lower bounds on the number of periodic points first for surface diffeomorphisms (improving a result of Sarig) and for Sinaï billiards maps (building on a result of Baladi and Demers). Finally we characterize surface diffeomorphisms admitting a Hölder-continuous coding of all their aperiodic hyperbolic measures and give a slightly weaker construction preserving local compactness.

Citation: Jérôme Buzzi. The degree of Bowen factors and injective codings of diffeomorphisms. Journal of Modern Dynamics, 2020, 16: 1-36. doi: 10.3934/jmd.2020001
References:
[1]

V. Baladi and M. Demers, On the measure of maximal entropy for finite horizon Sinai billiard maps, J. Amer. Math. Soc., to appear. doi: 10.1090/jams/939.  Google Scholar

[2]

S. Ben Ovadia, Symbolic dynamics for non-uniformly hyperbolic diffeomorphisms of compact smooth manifolds, J. Mod. Dyn., 13 (2018), 43-113.  doi: 10.3934/jmd.2018013.  Google Scholar

[3]

R. Bowen, On Axiom A diffeomorphisms, Regional Conference Series in Mathematics, 35, American Mathematical Society, Providence, R.I., 1978.  Google Scholar

[4]

M. Boyle and J. Buzzi, The almost Borel structure of surface diffeomorphisms, Markov shifts and their factors, J. Eur. Math. Soc. (JEMS), 19 (2017), 2739-2782.  doi: 10.4171/JEMS/727.  Google Scholar

[5]

D. Burguet, Periodic expansiveness of smooth surface diffeomorphisms and applications, J. Eur. Math. Soc. (JEMS), to appear. doi: 10.4171/JEMS/925.  Google Scholar

[6]

J. Buzzi, Subshifts of quasi-finite type, Invent. Math., 159 (2005), 369-406.  doi: 10.1007/s00222-004-0392-1.  Google Scholar

[7]

J. Buzzi, S. Crovisier and O. Sarig, Measures of maximal entropy for surface diffeomorphisms, arXiv: 1811.02240, 2018. Google Scholar

[8]

N. Chernov and R. Markarian, Chaotic Billiards, Mathematical Surveys and Monographs, 127, American Mathematical Society, Providence, RI, 2006. doi: 10.1090/surv/127.  Google Scholar

[9]

E. Covan and M. Paul, Endomorphisms of irreducible subshifts of finite type, Math. Systems Theory, 8 (1974/75), 167-175.  doi: 10.1007/BF01762187.  Google Scholar

[10]

E. Covan and M. Paul, Sofic systems, Israel J. Math., 20 (1975), 165-177.  doi: 10.1007/BF02757884.  Google Scholar

[11]

E. Covan and M. Paul, Finite procedures for sofic systems, Monatsh. Math., 83 (1977), 265-278.  doi: 10.1007/BF01387905.  Google Scholar

[12]

D. Fried, Finitely presented dynamical systems, Ergodic Theory Dynam. Systems, 7 (1987), 489-507.  doi: 10.1017/S014338570000417X.  Google Scholar

[13]

B. M. Gurevich and S. V. Savchenko, Thermodynamic formalism for symbolic Markov chains with a countable number of states, Russian Math. Surveys, 53 (1998), 245-344.  doi: 10.1070/rm1998v053n02ABEH000017.  Google Scholar

[14]

G. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory, 3 (1969), 320-375.  doi: 10.1007/BF01691062.  Google Scholar

[15]

V. Kaloshin, Generic diffeomorphisms with superexponential growth of number of periodic orbits, Comm. Math. Phys., 211 (2000), 253-271.  doi: 10.1007/s002200050811.  Google Scholar

[16] A. Katok and B. Hasselblatt, An Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511809187.  Google Scholar
[17]

A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4190-4.  Google Scholar

[18]

B. Kitchens, Symbolic Dynamics. One-Sided, Two-Sided and Countable State Markov Shifts, Universitext, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-642-58822-8.  Google Scholar

[19]

Y. Lima and C. Matheus, Symbolic dynamics for non-uniformly hyperbolic surface maps with discontinuities, Ann. Sci. ïc. Norm. Supér. (4), 51 (2018), 1-38.   Google Scholar

[20]

Y. Lima and O. Sarig, Symbolic dynamics for three-dimensional flows with positive topological entropy, J. Eur. Math. Soc. (JEMS), 21 (2019), 199-256.  doi: 10.4171/JEMS/834.  Google Scholar

[21] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511626302.  Google Scholar
[22]

A. Manning, Axiom A diffeomorphisms have rational zeta functions, Bull. London Math. Soc., 3 (1971), 215-220.  doi: 10.1112/blms/3.2.215.  Google Scholar

[23]

S. Newhouse, Continuity properties of entropy, Ann. of Math. (2), 129 (1989), 215-235.  doi: 10.2307/1971492.  Google Scholar

[24]

O. Sarig, Symbolic dynamics for surface diffeomorphisms with positive entropy, J. Amer. Math. Soc., 26 (2013), 341-426.  doi: 10.1090/S0894-0347-2012-00758-9.  Google Scholar

[25]

O. Sarig, private communication, 2015. Google Scholar

show all references

References:
[1]

V. Baladi and M. Demers, On the measure of maximal entropy for finite horizon Sinai billiard maps, J. Amer. Math. Soc., to appear. doi: 10.1090/jams/939.  Google Scholar

[2]

S. Ben Ovadia, Symbolic dynamics for non-uniformly hyperbolic diffeomorphisms of compact smooth manifolds, J. Mod. Dyn., 13 (2018), 43-113.  doi: 10.3934/jmd.2018013.  Google Scholar

[3]

R. Bowen, On Axiom A diffeomorphisms, Regional Conference Series in Mathematics, 35, American Mathematical Society, Providence, R.I., 1978.  Google Scholar

[4]

M. Boyle and J. Buzzi, The almost Borel structure of surface diffeomorphisms, Markov shifts and their factors, J. Eur. Math. Soc. (JEMS), 19 (2017), 2739-2782.  doi: 10.4171/JEMS/727.  Google Scholar

[5]

D. Burguet, Periodic expansiveness of smooth surface diffeomorphisms and applications, J. Eur. Math. Soc. (JEMS), to appear. doi: 10.4171/JEMS/925.  Google Scholar

[6]

J. Buzzi, Subshifts of quasi-finite type, Invent. Math., 159 (2005), 369-406.  doi: 10.1007/s00222-004-0392-1.  Google Scholar

[7]

J. Buzzi, S. Crovisier and O. Sarig, Measures of maximal entropy for surface diffeomorphisms, arXiv: 1811.02240, 2018. Google Scholar

[8]

N. Chernov and R. Markarian, Chaotic Billiards, Mathematical Surveys and Monographs, 127, American Mathematical Society, Providence, RI, 2006. doi: 10.1090/surv/127.  Google Scholar

[9]

E. Covan and M. Paul, Endomorphisms of irreducible subshifts of finite type, Math. Systems Theory, 8 (1974/75), 167-175.  doi: 10.1007/BF01762187.  Google Scholar

[10]

E. Covan and M. Paul, Sofic systems, Israel J. Math., 20 (1975), 165-177.  doi: 10.1007/BF02757884.  Google Scholar

[11]

E. Covan and M. Paul, Finite procedures for sofic systems, Monatsh. Math., 83 (1977), 265-278.  doi: 10.1007/BF01387905.  Google Scholar

[12]

D. Fried, Finitely presented dynamical systems, Ergodic Theory Dynam. Systems, 7 (1987), 489-507.  doi: 10.1017/S014338570000417X.  Google Scholar

[13]

B. M. Gurevich and S. V. Savchenko, Thermodynamic formalism for symbolic Markov chains with a countable number of states, Russian Math. Surveys, 53 (1998), 245-344.  doi: 10.1070/rm1998v053n02ABEH000017.  Google Scholar

[14]

G. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory, 3 (1969), 320-375.  doi: 10.1007/BF01691062.  Google Scholar

[15]

V. Kaloshin, Generic diffeomorphisms with superexponential growth of number of periodic orbits, Comm. Math. Phys., 211 (2000), 253-271.  doi: 10.1007/s002200050811.  Google Scholar

[16] A. Katok and B. Hasselblatt, An Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511809187.  Google Scholar
[17]

A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4190-4.  Google Scholar

[18]

B. Kitchens, Symbolic Dynamics. One-Sided, Two-Sided and Countable State Markov Shifts, Universitext, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-642-58822-8.  Google Scholar

[19]

Y. Lima and C. Matheus, Symbolic dynamics for non-uniformly hyperbolic surface maps with discontinuities, Ann. Sci. ïc. Norm. Supér. (4), 51 (2018), 1-38.   Google Scholar

[20]

Y. Lima and O. Sarig, Symbolic dynamics for three-dimensional flows with positive topological entropy, J. Eur. Math. Soc. (JEMS), 21 (2019), 199-256.  doi: 10.4171/JEMS/834.  Google Scholar

[21] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511626302.  Google Scholar
[22]

A. Manning, Axiom A diffeomorphisms have rational zeta functions, Bull. London Math. Soc., 3 (1971), 215-220.  doi: 10.1112/blms/3.2.215.  Google Scholar

[23]

S. Newhouse, Continuity properties of entropy, Ann. of Math. (2), 129 (1989), 215-235.  doi: 10.2307/1971492.  Google Scholar

[24]

O. Sarig, Symbolic dynamics for surface diffeomorphisms with positive entropy, J. Amer. Math. Soc., 26 (2013), 341-426.  doi: 10.1090/S0894-0347-2012-00758-9.  Google Scholar

[25]

O. Sarig, private communication, 2015. Google Scholar

Figure 1.  The subshift of finite type in Example 4.9
[1]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[2]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[3]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[4]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[5]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[6]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[7]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[8]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[9]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[10]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[11]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[12]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[13]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[14]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[15]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[16]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[17]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[18]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[19]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[20]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (272)
  • HTML views (639)
  • Cited by (1)

Other articles
by authors

[Back to Top]