• Previous Article
    Equilibrium measures for some partially hyperbolic systems
  • JMD Home
  • This Volume
  • Next Article
    Counting square-tiled surfaces with prescribed real and imaginary foliations and connections to Mirzakhani's asymptotics for simple closed hyperbolic geodesics
  2020, 16: 109-153. doi: 10.3934/jmd.2020005

Angels' staircases, Sturmian sequences, and trajectories on homothety surfaces

1. 

Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263, USA

2. 

Department of Mathematics, Kidder Hall 368, Oregon State University, Corvallis, OR 97331, USA

Received  September 15, 2018 Revised  February 13, 2020

A homothety surface can be assembled from polygons by identifying their edges in pairs via homotheties, which are compositions of translation and scaling. We consider linear trajectories on a $ 1 $-parameter family of genus-$ 2 $ homothety surfaces. The closure of a trajectory on each of these surfaces always has Hausdorff dimension $ 1 $, and contains either a closed loop or a lamination with Cantor cross-section. Trajectories have cutting sequences that are either eventually periodic or eventually Sturmian. Although no two of these surfaces are affinely equivalent, their linear trajectories can be related directly to those on the square torus, and thence to each other, by means of explicit functions. We also briefly examine two related families of surfaces and show that the above behaviors can be mixed; for instance, the closure of a linear trajectory can contain both a closed loop and a lamination.

Citation: Joshua P. Bowman, Slade Sanderson. Angels' staircases, Sturmian sequences, and trajectories on homothety surfaces. Journal of Modern Dynamics, 2020, 16: 109-153. doi: 10.3934/jmd.2020005
References:
[1]

D. Bailey and R. Crandall, Random generators and normal numbers, Exp. Math., 11 (2002), 527-546.  doi: 10.1080/10586458.2002.10504704.  Google Scholar

[2]

S. Bates and A. Norton, On sets of critical values in the real line, Duke Math. J., 83 (1996), 399-413.  doi: 10.1215/S0012-7094-96-08313-1.  Google Scholar

[3]

A. Besicovitch and S. Taylor, On the complementary intervals of a linear closed set of zero Lebesgue measure, J. London Math. Soc., 29 (1954), 449-459.  doi: 10.1112/jlms/s1-29.4.449.  Google Scholar

[4]

A. Boulanger, C. Fougeron and S. Ghazouani, Cascades in the dynamics of affine interval exchange transformations, Erg. Th. Dyn. Sys., (2019), 1–25. doi: 10.1017/etds.2018.141.  Google Scholar

[5]

Y. Bugeaud, Dynamique de certaines applications contractantes, linéaires par morceaux, sur [0, 1[, C.R.A.S. Série I, 317 (1993), 575-578.   Google Scholar

[6]

Y. Bugeaud and J.-P. Conze, Calcul de la dynamique de transformations linéaires contractantes mod 1 et arbre de Farey, Acta Arith., 88 (1999), 201-218.  doi: 10.4064/aa-88-3-201-218.  Google Scholar

[7]

R. Coutinho, Dinâmica Simbólica Linear, Ph. D. Thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1999. Google Scholar

[8]

R. CoutinhoB. FernandezR. Lima and A. Meyroneinc, Discrete time piecewise affine models of genetic regulatory networks, J. Math. Biol., 52 (2006), 524-570.  doi: 10.1007/s00285-005-0359-x.  Google Scholar

[9]

E. J. Ding and P. C. Hemmer, Exact treatment of mode locking for a piecewise linear map, J. Stat. Phys., 46 (1987), 99-110.  doi: 10.1007/BF01010333.  Google Scholar

[10]

E. DuryevC. Fougeron and S. Ghazouani, Dilation surfaces and their Veech groups, J. Mod. Dyn., 14 (2019), 121-151.  doi: 10.3934/jmd.2019005.  Google Scholar

[11]

A. Hatcher and U. Oertel, Affine lamination spaces for surfaces, Pacific J. Math., 154 (1992), 87-101.  doi: 10.2140/pjm.1992.154.87.  Google Scholar

[12]

M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. maths. de l'I.H.É.S., 49 (1979), 5-233.   Google Scholar

[13]

S. Janson and A. Öberg, A piecewise contractive dynamical system and election methods, Bull. Soc. Math. de France, 147 (2019), 395-441.  doi: 10.24033/bsmf.2787.  Google Scholar

[14]

A. Khinchin, Continued Fractions, Courier Corporation, 1964.  Google Scholar

[15]

L. Kuipers and H. Neiderreiter, Uniform Distribution of Sequences, John Wiley & Sons, 1974.  Google Scholar

[16]

I. Liousse, Dynamique générique des feuilletages transversalement affines des surfaces, Bull. S.M.F., 123 (1995), 493-516.  doi: 10.24033/bsmf.2268.  Google Scholar

[17]

J. Liouville, Sur quelques séries et produits infinis, J. math. pures et appl. 2e série, 2 (1857), 433-440.   Google Scholar

[18]

M. Laurent and A. Nogueira, Rotation number of contracted rotations, J. Mod. Dyn., 12 (2018), 175-191.  doi: 10.3934/jmd.2018007.  Google Scholar

[19]

S. MarmiP. Moussa and J.-C. Yoccoz, Affine interval exchange maps with a wandering interval, Proc. London Math. Soc., 100 (2010), 639-669.  doi: 10.1112/plms/pdp037.  Google Scholar

[20]

W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. A.M.S., 19 (1988), 417-431.  doi: 10.1090/S0273-0979-1988-15685-6.  Google Scholar

[21]

W. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Inv. Math., 97 (1989), 553-583.  doi: 10.1007/BF01388890.  Google Scholar

[22]

P. Veerman, Symbolic dynamics of order-preserving orbits, Physica D: Nonlinear Phenomena, 29 (1987), 191-201.  doi: 10.1016/0167-2789(87)90055-8.  Google Scholar

show all references

References:
[1]

D. Bailey and R. Crandall, Random generators and normal numbers, Exp. Math., 11 (2002), 527-546.  doi: 10.1080/10586458.2002.10504704.  Google Scholar

[2]

S. Bates and A. Norton, On sets of critical values in the real line, Duke Math. J., 83 (1996), 399-413.  doi: 10.1215/S0012-7094-96-08313-1.  Google Scholar

[3]

A. Besicovitch and S. Taylor, On the complementary intervals of a linear closed set of zero Lebesgue measure, J. London Math. Soc., 29 (1954), 449-459.  doi: 10.1112/jlms/s1-29.4.449.  Google Scholar

[4]

A. Boulanger, C. Fougeron and S. Ghazouani, Cascades in the dynamics of affine interval exchange transformations, Erg. Th. Dyn. Sys., (2019), 1–25. doi: 10.1017/etds.2018.141.  Google Scholar

[5]

Y. Bugeaud, Dynamique de certaines applications contractantes, linéaires par morceaux, sur [0, 1[, C.R.A.S. Série I, 317 (1993), 575-578.   Google Scholar

[6]

Y. Bugeaud and J.-P. Conze, Calcul de la dynamique de transformations linéaires contractantes mod 1 et arbre de Farey, Acta Arith., 88 (1999), 201-218.  doi: 10.4064/aa-88-3-201-218.  Google Scholar

[7]

R. Coutinho, Dinâmica Simbólica Linear, Ph. D. Thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1999. Google Scholar

[8]

R. CoutinhoB. FernandezR. Lima and A. Meyroneinc, Discrete time piecewise affine models of genetic regulatory networks, J. Math. Biol., 52 (2006), 524-570.  doi: 10.1007/s00285-005-0359-x.  Google Scholar

[9]

E. J. Ding and P. C. Hemmer, Exact treatment of mode locking for a piecewise linear map, J. Stat. Phys., 46 (1987), 99-110.  doi: 10.1007/BF01010333.  Google Scholar

[10]

E. DuryevC. Fougeron and S. Ghazouani, Dilation surfaces and their Veech groups, J. Mod. Dyn., 14 (2019), 121-151.  doi: 10.3934/jmd.2019005.  Google Scholar

[11]

A. Hatcher and U. Oertel, Affine lamination spaces for surfaces, Pacific J. Math., 154 (1992), 87-101.  doi: 10.2140/pjm.1992.154.87.  Google Scholar

[12]

M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. maths. de l'I.H.É.S., 49 (1979), 5-233.   Google Scholar

[13]

S. Janson and A. Öberg, A piecewise contractive dynamical system and election methods, Bull. Soc. Math. de France, 147 (2019), 395-441.  doi: 10.24033/bsmf.2787.  Google Scholar

[14]

A. Khinchin, Continued Fractions, Courier Corporation, 1964.  Google Scholar

[15]

L. Kuipers and H. Neiderreiter, Uniform Distribution of Sequences, John Wiley & Sons, 1974.  Google Scholar

[16]

I. Liousse, Dynamique générique des feuilletages transversalement affines des surfaces, Bull. S.M.F., 123 (1995), 493-516.  doi: 10.24033/bsmf.2268.  Google Scholar

[17]

J. Liouville, Sur quelques séries et produits infinis, J. math. pures et appl. 2e série, 2 (1857), 433-440.   Google Scholar

[18]

M. Laurent and A. Nogueira, Rotation number of contracted rotations, J. Mod. Dyn., 12 (2018), 175-191.  doi: 10.3934/jmd.2018007.  Google Scholar

[19]

S. MarmiP. Moussa and J.-C. Yoccoz, Affine interval exchange maps with a wandering interval, Proc. London Math. Soc., 100 (2010), 639-669.  doi: 10.1112/plms/pdp037.  Google Scholar

[20]

W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. A.M.S., 19 (1988), 417-431.  doi: 10.1090/S0273-0979-1988-15685-6.  Google Scholar

[21]

W. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Inv. Math., 97 (1989), 553-583.  doi: 10.1007/BF01388890.  Google Scholar

[22]

P. Veerman, Symbolic dynamics of order-preserving orbits, Physica D: Nonlinear Phenomena, 29 (1987), 191-201.  doi: 10.1016/0167-2789(87)90055-8.  Google Scholar

Figure 1.  LEFT: The union of the rectangles $ R_s^\pm $. RIGHT: Edge identifications that produce the surface $ X_s $. Horizontal edges are identified by translations; vertical edges are identified by homotheties. $ X_s^+ $ and $ X_s^- $ are genus $ 1 $ subsurfaces with boundary. They are joined along the saddle connection $ E $
Figure 2.  The graph of $ \Delta_s^-(x) $ when $ s = 2/3 $, drawn only for $ 0 \le x \le 1 $. The graph of $ \Delta_s^+(x) $ appears the same; the differences occur only at the jumps, which are dense but countable
Figure 3.  "Tongues of angels:" Each tongue corresponds to a rational number in $ (0,1) $. The boundary curves are drawn using the formulas for $ \Delta_s^\pm(k/n) $
Figure 4.  The graphs of two functions $ \Upsilon_{s,\xi}^\pm(x) $ with $ s = 0.95 $, drawn only for $ 0 \le x \le 1 $. TOP: $ \xi = (1+\sqrt5)/2 $. BOTTOM: $ \xi = \pi $
Figure 5.  The image of $ \Upsilon_{s,\xi}^+ $ for $ 0<\xi<1 $
Figure 6.  Stacking diagram for the word $ BAABA $
Figure 7.  The trajectories $ \tau_\xi^- $ and $ \tau_\xi^+ $, drawn on a partial stacking diagram. LEFT: $ \xi \notin \mathbb{Q} $, as in §4.3. These trajectories are parallel and bound a strip in $ X_s $. RIGHT: $ \xi = k/n \in \mathbb{Q} $, as in §4.4. These trajectories will intersect after crossing $ k + n $ edges
Figure 8.  LEFT: A surface $ X_s^u $ with $ 0 < u < 1 $. Lower-case letters indicate dimensions. Capital letters indicate gluings between edges. RIGHT: The surface $ X_{1/2}^{1/2} $, which was the first surface the authors considered
Figure 9.  LEFT: The rectangles $ R_{s_1}^+ $ and $ R_{s_2}^- $. RIGHT: Edge identifications to form the surface $ X_{s_1,s_2} $. $ X_{s_1,s_2}^+ $ is isomorphic to $ X_{s_1}^+ $, and $ X_{s_1,s_2}^- $ is isomorphic to $ X_{s_2}^- $, as defined in §2.6
[1]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[2]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[3]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[4]

Sergio Zamora. Tori can't collapse to an interval. Electronic Research Archive, , () : -. doi: 10.3934/era.2021005

[5]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[6]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[7]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[8]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[9]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[10]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[11]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[12]

Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020366

[13]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[14]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[15]

Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052

[16]

Yuanshi Wang. Asymmetric diffusion in a two-patch mutualism system characterizing exchange of resource for resource. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 963-985. doi: 10.3934/dcdsb.2020149

[17]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[18]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[19]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[20]

Björn Augner, Dieter Bothe. The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 533-574. doi: 10.3934/dcdss.2020406

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (108)
  • HTML views (398)
  • Cited by (0)

Other articles
by authors

[Back to Top]