
-
Previous Article
Shimura–Teichmüller curves in genus 5
- JMD Home
- This Volume
-
Next Article
Exponential gaps in the length spectrum
On the non-monotonicity of entropy for a class of real quadratic rational maps
1. | Department of Mathematics, Northwestern University, Lunt Hall, 2033 Sheridan Rd., Evanston, IL 60208, USA |
2. | Department of Mathematics, Indiana University, Rawles Hall, 831 East 3rd St., Bloomington, IN 47405, USA |
We prove that the entropy function on the moduli space of real quadratic rational maps is not monotonic by exhibiting a continuum of disconnected level sets. This entropy behavior is in stark contrast with the case of polynomial maps, and establishes a conjecture on the failure of monotonicity for bimodal real quadratic rational maps of shape $ (+-+) $ which was posed in [
References:
[1] |
L. Block and J. Keesling,
Computing the topological entropy of maps of the interval with three monotone pieces, J. Statist. Phys., 66 (1992), 755-774.
doi: 10.1007/BF01055699. |
[2] |
L. Block, J. Keesling, S. Li and K. Peterson,
An improved algorithm for computing topological entropy, J. Statist. Phys., 55 (1989), 929-939.
doi: 10.1007/BF01041072. |
[3] |
H. Bruin and S. van Strien,
Monotonicity of entropy for real multimodal maps, J. Amer. Math. Soc., 28 (2015), 1-61.
doi: 10.1090/S0894-0347-2014-00795-5. |
[4] |
S. P. Dawson, R. Galeeva, J. W. Milnor and C. Tresser, A monotonicity conjecture for real cubic maps, In Real and Complex Dynamical Systems (Hillerød, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., volume 464, Kluwer Acad. Publ., Dordrecht, 1995,165–183. |
[5] |
A. Douady and J. H. Hubbard, Étude Dynamique des Polynômes Complexes. I & II, Publications Mathématiques d'Orsay, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984, 75 pp. |
[6] |
A. Douady and J. H. Hubbard,
A proof of Thurston's topological characterization of rational functions, Acta Math., 171 (1993), 263-297.
doi: 10.1007/BF02392534. |
[7] |
A. Douady, Topological entropy of unimodal maps: Monotonicity for quadratic polynomials, In Real and Complex Dynamical Systems (Hillerød, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., volume 464, Kluwer Acad. Publ., Dordrecht, 1995, 65–87. |
[8] |
A. L. Epstein,
Bounded hyperbolic components of quadratic rational maps, Ergodic Theory Dynam. Systems, 20 (2000), 727-748.
doi: 10.1017/S0143385700000390. |
[9] |
K. Filom, Real entropy rigidity under quasi-conformal deformations, preprint, 2018, arXiv: 1803.04082. Google Scholar |
[10] |
K. Filom, Monotonicity of entropy for real quadratic rational maps, preprint, 2019, arXiv: 1901.03458. Google Scholar |
[11] |
O. Kozlovski, On the structure of isentropes of real polynomials, J. Lond. Math. Soc. (2), 100
(2019), 159–182.
doi: 10.1112/jlms.12207. |
[12] |
G. Levin, W. Shen and S. van Strien, Positive transversality via transfer operators and holomorphic motions with applications to monotonicity for interval maps, preprint, 2019, arXiv: 1902.06732. Google Scholar |
[13] |
R. Mañé, P. Sad and D. Sullivan On the dynamics of rational maps, Ann. Sci. École Norm.
Sup. (4), 16 (1983), 193–217.
doi: 10.24033/asens.1446. |
[14] |
J. W. Milnor,
Geometry and dynamics of quadratic rational maps, Experiment. Math., 2 (1993), 37-83.
doi: 10.1080/10586458.1993.10504267. |
[15] |
J. W. Milnor,
On rational maps with two critical points, Experiment. Math., 9 (2000), 481-522.
doi: 10.1080/10586458.2000.10504657. |
[16] |
J. W. Milnor, Dynamics in One Complex Variable, 3$^{rd}$ edition, Annals of Mathematics Studies,
volume 160, Princeton University Press, Princeton, NJ, 2006. |
[17] |
J. W. Milnor, Hyperbolic components, In Conformal Dynamics and Hyperbolic Geometry, volume 573, Contemp. Math., Amer. Math. Soc., Providence, RI, 2012,183–232.
doi: 10.1090/conm/573/11428. |
[18] |
J. W. Milnor and W. P. Thurston, On iterated maps of the interval, In Dynamical Systems (College Park, MD, 1986–87), Lecture Notes in Math., volume 1342, Springer, Berlin, 1988,465–563.
doi: 10.1007/BFb0082847. |
[19] |
J. W. Milnor and C. Tresser,
On entropy and monotonicity for real cubic maps, Comm. Math. Phys., 209 (2000), 123-178.
doi: 10.1007/s002200050018. |
[20] |
M. Misiurewicz, Continuity of entropy revisited, In Dynamical Systems and Applications, World Sci. Ser. Appl. Anal., volume 4, World Sci. Publ., River Edge, NJ, 1995,495–503.
doi: 10.1142/9789812796417_0031. |
[21] |
C. L. Petersen,
On the Pommerenke-Levin-Yoccoz inequality, Ergodic Theory Dynam. Systems, 13 (1993), 785-806.
|
[22] |
K. M. Pilgrim, Cylinders for Iterated Rational Maps, Ph.D. Thesis, University of California, Berkeley, 1994,202 pp. |
[23] |
K. M. Pilgrim,
Rational maps whose Fatou components are Jordan domains, Ergodic Theory Dynam. Systems, 16 (1996), 1323-1343.
doi: 10.1017/S0143385700010051. |
[24] |
K. M. Pilgrim and L. Tan,
Combining rational maps and controlling obstructions, Ergodic Theory Dynam. Systems, 18 (1998), 221-245.
doi: 10.1017/S0143385798100329. |
[25] |
M. Rees,
Components of degree two hyperbolic rational maps, Invent. Math., 100 (1990), 357-382.
doi: 10.1007/BF01231191. |
[26] |
L. Tan, On pinching deformations of rational maps, Ann. Sci. École Norm. Sup. (4), 35 (2002), 353–370.
doi: 10.1016/S0012-9593(02)01092-3. |
[27] |
S. van Strien, Milnor's conjecture on monotonicity of topological entropy: Results and questions, In Frontiers in Complex Dynamics, Princeton Math. Ser., volume 51, Princeton Univ.
Press, Princeton, NJ, 2014,323–337. |
show all references
References:
[1] |
L. Block and J. Keesling,
Computing the topological entropy of maps of the interval with three monotone pieces, J. Statist. Phys., 66 (1992), 755-774.
doi: 10.1007/BF01055699. |
[2] |
L. Block, J. Keesling, S. Li and K. Peterson,
An improved algorithm for computing topological entropy, J. Statist. Phys., 55 (1989), 929-939.
doi: 10.1007/BF01041072. |
[3] |
H. Bruin and S. van Strien,
Monotonicity of entropy for real multimodal maps, J. Amer. Math. Soc., 28 (2015), 1-61.
doi: 10.1090/S0894-0347-2014-00795-5. |
[4] |
S. P. Dawson, R. Galeeva, J. W. Milnor and C. Tresser, A monotonicity conjecture for real cubic maps, In Real and Complex Dynamical Systems (Hillerød, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., volume 464, Kluwer Acad. Publ., Dordrecht, 1995,165–183. |
[5] |
A. Douady and J. H. Hubbard, Étude Dynamique des Polynômes Complexes. I & II, Publications Mathématiques d'Orsay, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984, 75 pp. |
[6] |
A. Douady and J. H. Hubbard,
A proof of Thurston's topological characterization of rational functions, Acta Math., 171 (1993), 263-297.
doi: 10.1007/BF02392534. |
[7] |
A. Douady, Topological entropy of unimodal maps: Monotonicity for quadratic polynomials, In Real and Complex Dynamical Systems (Hillerød, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., volume 464, Kluwer Acad. Publ., Dordrecht, 1995, 65–87. |
[8] |
A. L. Epstein,
Bounded hyperbolic components of quadratic rational maps, Ergodic Theory Dynam. Systems, 20 (2000), 727-748.
doi: 10.1017/S0143385700000390. |
[9] |
K. Filom, Real entropy rigidity under quasi-conformal deformations, preprint, 2018, arXiv: 1803.04082. Google Scholar |
[10] |
K. Filom, Monotonicity of entropy for real quadratic rational maps, preprint, 2019, arXiv: 1901.03458. Google Scholar |
[11] |
O. Kozlovski, On the structure of isentropes of real polynomials, J. Lond. Math. Soc. (2), 100
(2019), 159–182.
doi: 10.1112/jlms.12207. |
[12] |
G. Levin, W. Shen and S. van Strien, Positive transversality via transfer operators and holomorphic motions with applications to monotonicity for interval maps, preprint, 2019, arXiv: 1902.06732. Google Scholar |
[13] |
R. Mañé, P. Sad and D. Sullivan On the dynamics of rational maps, Ann. Sci. École Norm.
Sup. (4), 16 (1983), 193–217.
doi: 10.24033/asens.1446. |
[14] |
J. W. Milnor,
Geometry and dynamics of quadratic rational maps, Experiment. Math., 2 (1993), 37-83.
doi: 10.1080/10586458.1993.10504267. |
[15] |
J. W. Milnor,
On rational maps with two critical points, Experiment. Math., 9 (2000), 481-522.
doi: 10.1080/10586458.2000.10504657. |
[16] |
J. W. Milnor, Dynamics in One Complex Variable, 3$^{rd}$ edition, Annals of Mathematics Studies,
volume 160, Princeton University Press, Princeton, NJ, 2006. |
[17] |
J. W. Milnor, Hyperbolic components, In Conformal Dynamics and Hyperbolic Geometry, volume 573, Contemp. Math., Amer. Math. Soc., Providence, RI, 2012,183–232.
doi: 10.1090/conm/573/11428. |
[18] |
J. W. Milnor and W. P. Thurston, On iterated maps of the interval, In Dynamical Systems (College Park, MD, 1986–87), Lecture Notes in Math., volume 1342, Springer, Berlin, 1988,465–563.
doi: 10.1007/BFb0082847. |
[19] |
J. W. Milnor and C. Tresser,
On entropy and monotonicity for real cubic maps, Comm. Math. Phys., 209 (2000), 123-178.
doi: 10.1007/s002200050018. |
[20] |
M. Misiurewicz, Continuity of entropy revisited, In Dynamical Systems and Applications, World Sci. Ser. Appl. Anal., volume 4, World Sci. Publ., River Edge, NJ, 1995,495–503.
doi: 10.1142/9789812796417_0031. |
[21] |
C. L. Petersen,
On the Pommerenke-Levin-Yoccoz inequality, Ergodic Theory Dynam. Systems, 13 (1993), 785-806.
|
[22] |
K. M. Pilgrim, Cylinders for Iterated Rational Maps, Ph.D. Thesis, University of California, Berkeley, 1994,202 pp. |
[23] |
K. M. Pilgrim,
Rational maps whose Fatou components are Jordan domains, Ergodic Theory Dynam. Systems, 16 (1996), 1323-1343.
doi: 10.1017/S0143385700010051. |
[24] |
K. M. Pilgrim and L. Tan,
Combining rational maps and controlling obstructions, Ergodic Theory Dynam. Systems, 18 (1998), 221-245.
doi: 10.1017/S0143385798100329. |
[25] |
M. Rees,
Components of degree two hyperbolic rational maps, Invent. Math., 100 (1990), 357-382.
doi: 10.1007/BF01231191. |
[26] |
L. Tan, On pinching deformations of rational maps, Ann. Sci. École Norm. Sup. (4), 35 (2002), 353–370.
doi: 10.1016/S0012-9593(02)01092-3. |
[27] |
S. van Strien, Milnor's conjecture on monotonicity of topological entropy: Results and questions, In Frontiers in Complex Dynamics, Princeton Math. Ser., volume 51, Princeton Univ.
Press, Princeton, NJ, 2014,323–337. |







[1] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[2] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[3] |
Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391 |
[4] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[5] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[6] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[7] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[8] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[9] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
[10] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[11] |
Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021004 |
[12] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
2019 Impact Factor: 0.465
Tools
Article outline
Figures and Tables
[Back to Top]