\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A new regularization possibility for the Boltzmann equation with soft potentials

Abstract Related Papers Cited by
  • We consider a simplified Boltzmann equation: spatially homogeneous, two-dimensional, radially symmetric, with Grad's angular cutoff, and linearized around its initial condition. We prove that for a sufficiently singular velocity cross section, the solution may become instantaneously a function, even if the initial condition is a singular measure. To our knowledge, this is the first regularization result in the case with cutoff: all the previous results were relying on the non-integrability of the angular cross section. Furthermore, our result is quite surprising: the regularization occurs for initial conditions that are not too singular, but also not too regular. The objective of the present work is to explain that the singularity of the velocity cross section, which is often considered as a (technical) obstacle to regularization, seems on the contrary to help the regularization.
    Mathematics Subject Classification: Primary: 76P05, 82C40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(61) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return