
Previous Article
A Boltzmannlike equation for choice formation
 KRM Home
 This Issue

Next Article
1D numerical simulation of the mep mathematical model in ballistic diode problem
Stability of the travelling wave in a 2D weakly nonlinear Stefan problem
1.  Institut de Mathématiques de Bordeaux, Université Bordeaux 1, 33405 Talence cedex 
2.  Faculty of Sciences – Mathematics and Computer Science division, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081HV Amsterdam 
3.  Dipartimento di Matematica, Universitá degli Studi di Parma, Viale G. Usberti 85/A, 43100 Parma 
[1] 
Thomas Kappeler, Riccardo Montalto. Normal form coordinates for the BenjaminOno equation having expansions in terms of pseudodifferential operators. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022048 
[2] 
Kiah Wah Ong. Dynamic transitions of generalized KuramotoSivashinsky equation. Discrete and Continuous Dynamical Systems  B, 2016, 21 (4) : 12251236. doi: 10.3934/dcdsb.2016.21.1225 
[3] 
Lanzhe Liu. Mean oscillation and boundedness of Toeplitz Type operators associated to pseudodifferential operators. Communications on Pure and Applied Analysis, 2015, 14 (2) : 627636. doi: 10.3934/cpaa.2015.14.627 
[4] 
Fred C. Pinto. Nonlinear stability and dynamical properties for a KuramotoSivashinsky equation in space dimension two. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 117136. doi: 10.3934/dcds.1999.5.117 
[5] 
Liang Huang, Jiao Chen. The boundedness of multilinear and multiparameter pseudodifferential operators. Communications on Pure and Applied Analysis, 2021, 20 (2) : 801815. doi: 10.3934/cpaa.2020291 
[6] 
JIAO CHEN, WEI DAI, GUOZHEN LU. $L^p$ boundedness for maximal functions associated with multilinear pseudodifferential operators. Communications on Pure and Applied Analysis, 2017, 16 (3) : 883898. doi: 10.3934/cpaa.2017042 
[7] 
Milena Stanislavova, Atanas Stefanov. Effective estimates of the higher Sobolev norms for the KuramotoSivashinsky equation. Conference Publications, 2009, 2009 (Special) : 729738. doi: 10.3934/proc.2009.2009.729 
[8] 
Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a nonlocal KuramotoSivashinsky equation. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 701707. doi: 10.3934/dcds.2007.18.701 
[9] 
Peng Gao. Averaging principle for stochastic KuramotoSivashinsky equation with a fast oscillation. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 56495684. doi: 10.3934/dcds.2018247 
[10] 
Eduardo Cerpa. Null controllability and stabilization of the linear KuramotoSivashinsky equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 91102. doi: 10.3934/cpaa.2010.9.91 
[11] 
D. Hilhorst, L. A. Peletier, A. I. Rotariu, G. Sivashinsky. Global attractor and inertial sets for a nonlocal KuramotoSivashinsky equation. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 557580. doi: 10.3934/dcds.2004.10.557 
[12] 
Piotr Zgliczyński. Steady state bifurcations for the KuramotoSivashinsky equation: A computer assisted proof. Journal of Computational Dynamics, 2015, 2 (1) : 95142. doi: 10.3934/jcd.2015.2.95 
[13] 
Yuncherl Choi, Jongmin Han, ChunHsiung Hsia. Bifurcation analysis of the damped KuramotoSivashinsky equation with respect to the period. Discrete and Continuous Dynamical Systems  B, 2015, 20 (7) : 19331957. doi: 10.3934/dcdsb.2015.20.1933 
[14] 
L. Dieci, M. S Jolly, Ricardo Rosa, E. S. Van Vleck. Error in approximation of Lyapunov exponents on inertial manifolds: The KuramotoSivashinsky equation. Discrete and Continuous Dynamical Systems  B, 2008, 9 (3&4, May) : 555580. doi: 10.3934/dcdsb.2008.9.555 
[15] 
Peng Gao. Global exact controllability to the trajectories of the KuramotoSivashinsky equation. Evolution Equations and Control Theory, 2020, 9 (1) : 181191. doi: 10.3934/eect.2020002 
[16] 
Shuting Chen, Zengji Du, Jiang Liu, Ke Wang. The dynamic properties of a generalized Kawahara equation with KuramotoSivashinsky perturbation. Discrete and Continuous Dynamical Systems  B, 2022, 27 (3) : 14711496. doi: 10.3934/dcdsb.2021098 
[17] 
Ildoo Kim. An $L_p$Lipschitz theory for parabolic equations with time measurable pseudodifferential operators. Communications on Pure and Applied Analysis, 2018, 17 (6) : 27512771. doi: 10.3934/cpaa.2018130 
[18] 
Aslihan Demirkaya. The existence of a global attractor for a KuramotoSivashinsky type equation in 2D. Conference Publications, 2009, 2009 (Special) : 198207. doi: 10.3934/proc.2009.2009.198 
[19] 
Peng Gao. Null controllability with constraints on the state for the 1D KuramotoSivashinsky equation. Evolution Equations and Control Theory, 2015, 4 (3) : 281296. doi: 10.3934/eect.2015.4.281 
[20] 
David Massatt. On the wellposedness of the anisotropicallyreduced twodimensional KuramotoSivashinsky Equation. Discrete and Continuous Dynamical Systems  B, 2022 doi: 10.3934/dcdsb.2021305 
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]